
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{S}\mathrm{C}\mathrm{I}. \mathrm{C}\mathrm{O}\mathrm{M}\mathrm{P}\mathrm{U}\mathrm{T}. © 2024 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 46, \mathrm{N}\mathrm{o}. 2, \mathrm{p}\mathrm{p}. \mathrm{A}1047--\mathrm{A}1075

AN INCREMENTAL TENSOR TRAIN DECOMPOSITION
ALGORITHM\ast

DORUK AKSOY\dagger , DAVID J. GORSICH\ddagger , SHRAVAN VEERAPANENI\S ,
AND ALEX A. GORODETSKY\dagger

From Doruk Aksoy, ``This paper is dedicated to the loving memory of my grandmother
Ayla Ya\c sar (1942--2022). I will miss making you Turkish coffee.""

Abstract. We present a new algorithm for incrementally updating the tensor train decom-
position of a stream of tensor data. This new algorithm, called the tensor train incremental core
expansion (TT-ICE), improves upon the current state-of-the-art algorithms for compressing in tensor
train format by developing a new adaptive approach that incurs significantly slower rank growth and
guarantees compression accuracy. This capability is achieved by limiting the number of new vec-
tors appended to the TT-cores of an existing accumulation tensor after each data increment. These
vectors represent directions orthogonal to the span of existing cores and are limited to those needed
to represent a newly arrived tensor to a target accuracy. We provide two versions of the algorithm:
TT-ICE and TT-ICE accelerated with heuristics (TT-ICE\ast). We provide a proof of correctness
for TT-ICE and empirically demonstrate the performance of the algorithms in compressing large-
scale video and scientific simulation datasets. Compared to existing approaches that also use rank
adaptation, TT-ICE\ast achieves 57\times higher compression and up to 95\% reduction in computational
time.

Key words. tensor decompositions, data compression, streaming
data, low-rank factorizations

MSC codes. 15A23, 65-04, 15A69, 65F55

DOI. 10.1137/22M1537734
See reproducibility of
computational results
at end of the article.

1. Introduction. Tensors provide a representation for multivariate or high-
dimensional data in many problems, including RGB images [14], social networks
[24, 21], multisensory experiments [3], neuroscience [17, 19], and finance [11]. As
the size of the tensor increases, computational processes become harder, if not impos-
sible, due to the curse of dimensionality---both storage and computational processing
requirements can grow exponentially with the number of dimensions. Tensor decom-
positions that rely on low-rank approximations provide a solution to mitigate the
curse of dimensionality to help reduce computational demands.

In many applications, data becomes available incrementally, e.g., from a sequence
of experiments [3], a video (which can be seen as a sequence of RGB images) [14], in

\ast Submitted to the journal's Numerical Algorithms for Scientific Computing section November 28,
2022; accepted for publication (in revised form) September 14, 2023; published electronically March
26, 2024.

https://doi.org/10.1137/22M1537734
Funding: The first, third, and fourth authors received partial support from the Automotive

Research Center at the University of Michigan in accordance with Cooperative Agreement W56HZV-
19-2-0001 with the U.S. Army DEVCOM Ground Vehicle Systems Center. The first and fourth
authors also received partial support from the Department of Energy Office of Scientific Research,
ASCR, under grant DE-SC0020364.

\dagger Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109 USA
(doruk@umich.edu, goroda@umich.edu).

\ddagger Ground Vehicle Systems Center, U.S. Army, Warren, MI 48092 USA (david.j.gorsich.civ@
army.mil).

\S Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 USA (shravan@
umich.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1047

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/22M1537734
mailto:doruk@umich.edu
mailto:goroda@umich.edu
mailto:david.j.gorsich.civ@army.mil
mailto:david.j.gorsich.civ@army.mil
mailto:shravan@umich.edu
mailto:shravan@umich.edu

A1048 AKSOY, GORSICH, VEERAPANENI, AND GORODETSKY

IoT applications [6], or from simulations of physical systems [2]. As a result, batch ten-
sor compression approaches that wait for all data to be collected may not be affordable
because the data storage may exceed capacity. Furthermore, the total number of data
points might not be known a priori. In this setting, it would be inefficient to recon-
struct and decompose the tensor every time a new data point arrives. Incremental
algorithms that update the decomposition without reconstructing the compressed
tensor are needed.

Existing works include incremental tensor decomposition algorithms in canonical
polyadic (CP) format [3, 8, 28, 25], Tucker format [10, 26, 4], and tensor train (TT)
[22] format [27, 15, 29]. In this work, we focus on the TT-format. Unlike the CP-
format, the TT-format avoids the NP-hard problem of computing the canonical rank
[12] and offers controlled compression algorithms. Also, the storage of a tensor in
TT-format scales linearly in the number of dimensions d, whereas in Tucker format,
it scales exponentially in d. Furthermore, the TT-format offers an efficient way to
execute basic linear algebra operations without reconstructing the full tensor, and
therefore it is beneficial for computing with large-scale data.

In this work, we consider a d-way tensor \scrY \in \BbbR n1\times \cdot \cdot \cdot \times nd to be a multidimen-
sional array. A tensor stream (or alternatively, stream of tensors) is a sequence of
d-way tensors \scrY 1,\scrY 2, . . ., where each element in the sequence \scrY k \in \BbbR n1\times \cdot \cdot \cdot \times nd is a
d-dimensional tensor.1 A finite stream of tensors is called an accumulation and can
be viewed as a (d + 1)-way tensor \scrX k \in \BbbR n1\times \cdot \cdot \cdot \times nd\times nk

d+1 by concatenating the ten-
sors in the stream along the last dimension. The problem we consider can then be
summarized as follows.

Problem 1. Construct a scheme to update the approximation \^\scrX k of the accu-
mulation tensor \scrX k after every increment k in TT-format. The constructed scheme
should maintain the guaranteed bounds on the error \| \scrX k - \^\scrX k\| F for all k. Further-
more, this approximate accumulation should represent all tensor increments \scrY \ell with
error \| \scrY \ell - \^\scrY \ell \| F \leq \varepsilon des\| \scrY \ell \| F for any \ell \leq k, where \^\scrY \ell can be extracted from \^\scrX k.

There are a few recent works for computing an incremental TT in this setting
[27, 15]; however, they suffer from drawbacks that limit their scalability. For exam-
ple, the TT-FOA [27] algorithm considers a fixed-rank approximation and uses an
optimization procedure that cannot guarantee bounded errors on all tensors seen in
the stream. The ITTD algorithm [15] (also see [7]), on the other hand, can guarantee
a prescribed error tolerance and enables rank adaptation. However, this algorithm
has computational challenges, which we show are due to inefficient preprocessing of
new data and overly conservative rank growth when the new data is incorporated
into the existing representation. Moreover, it does not maintain an orthonormal set
of TT-cores and therefore cannot be used to project arbitrary new data to obtain its
latent representation in TT-format.

Our contribution is a new incremental algorithm, the TT incremental core ex-
pansion (TT-ICE), for computing and updating the tensor train representation of
an approximate accumulation \^\scrX k. Moreover, this approach is suitable for the online
setting and never requires full storage or reconstruction of all data while providing a
solution to Problem 1. Specifically, the new aspects of our approach include

\bullet efficiently updating the rank to accurately represent each new data point;
\bullet controlling error growth and maintaining provably guaranteed bounds on the

compression error of each tensor in the stream for all times; and

1Despite the conservative definition here, we generalize the notion of tensor stream to support
batches of tensors in section 3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM A1049

\bullet a set of heuristic modifications that further significantly increase computa-
tional efficiency---this algorithm is called TT-ICE\ast .

These contributions are achieved by limiting the number of new vectors appended
to the TT-cores of an existing accumulation tensor after each data increment. These
vectors represent directions orthogonal to the span of the existing cores and are limited
to those needed to represent a newly arrived tensor to a target error. Moreover, our
theoretical results are empirically justified on video compression applications arising
from video game data and from solutions to numerical PDEs. Our results indicate
order-of-magnitude benefits in compression by TT-ICE over ITTD. We also demon-
strate that TT-ICE works in cases where ITTD runs out of memory. Finally, we show
that the heuristic version, TT-ICE\ast , can achieve 2.6 - 7.3\times speedup over TT-ICE,
with only a negligible sacrifice in compression accuracy.

The rest of this paper is structured as follows. In section 2, we present the
foundational concepts behind the TT-format and discuss the existing literature on
incremental TT-decompositions, in detail. In section 3, we present the TT-ICE and
TT-ICE\ast algorithms and prove the correctness of TT-ICE. In section 4, we provide
preliminary experiments using our proposed approach on physical and cyber-physical
data.

2. Background. In this section, we provide the necessary background for the
TT-decomposition and review two existing approaches for incremental approximation
in TT-format.

2.1. Tensor train decomposition. This section reviews the relevant back-
ground on tensors and the tensor train decomposition.

The mode-imatricization (or unfolding) of a d-way tensor\scrA \in \BbbR n1\times \cdot \cdot \cdot \times nd reshapes
the tensor into a matrix A(i) with size n1 . . . ni\times ni+1 . . . nd. In this unfolding, all the
modes up to the ith mode are mapped into the rows of the matrix and all other modes
are mapped to the columns.

The contraction between two tensors \scrA \in \BbbR n1\times \cdot \cdot \cdot \times nd and \scrB \in \BbbR nd\times nd+1\times \cdot \cdot \cdot \times nD

along the dth dimension of \scrA and the first dimension of \scrB is a binary operation
represented as

\scrC =\scrA d\times 1 \scrB , where \scrC (i1, i2, . . . , id - 1, id+1, . . . , iD)(1)

=

nd\sum
j=1

\scrA (i1, . . . , id - 1, j)\scrB (j, id+1, . . . , iD)

and the output \scrC \in \BbbR n1\times \cdot \cdot \cdot \times nd - 1\times nd+1\times \cdot \cdot \cdot \times nD becomes a (D - 2)-way tensor. The
subscripts on either side of the \times sign indicate the contraction axes of the tensors on
their respective sides.

A d-way tensor \scrY \in \BbbR n1\times \cdot \cdot \cdot \times nd is said to be in the TT-format when it is repre-
sented by a sequence of contractions of 3-way tensors \scrG i \in \BbbR ri - 1\times ni\times ri , for i= 1, . . . , d,
according to

\scrY = \scrG 1 3\times 1 \scrG 2 3\times 1 \cdot \cdot \cdot 3\times 1 \scrG d.(2)

The tensors \scrG i are called TT-cores and the ri, i= 0, . . . , d, are called TT-ranks with
r0 = rd = 1. The TT-ranks are equal to the ranks of a sequential set of unfoldings [22].
Specifically, the ith TT-rank ri is equal to the rank of the mode-i unfolding matrix
Y(i). In practice, the unfolding matrices are rarely exactly low-rank, and instead, an
approximate TT-representation is computed.

In this case, a rank-ri truncated SVD of the ith unfolding satisfies

Y(i) =Ui\Sigma iVi +Ei,(3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A1050 AKSOY, GORSICH, VEERAPANENI, AND GORODETSKY

where Ui \in \BbbR m\times ri , \Sigma i \in \BbbR ri\times ri , Vi \in \BbbR ri\times \ell are the factors of a rank-ri truncated SVD,
and Ei \in \BbbR m\times \ell is the residual. The dimensions of the unfolding require m=

\prod i
j=1 nj ,

and \ell =
\prod d

j=i+1 nj . The Eckart--Young--Mirsky theorem guarantees that the truncated
SVD provides the best rank-ri approximation of the matrix in the Frobenius norm, and
the reconstruction error can be bounded by the remaining singular values according

to \| Y(i) - Ui\Sigma iVi\| F = \| Ei\| F =
\sqrt{} \sum min(m,n)

j=ri+1 (\sigma
(i)
j)2, where \sigma

(i)
j is the jth singular value

of the mode-i unfolding [9, 18].
The proof for the TT-ranks [22, Thm. 2.1], is constructive and provides an algo-

rithm, called TT-SVD [22, Alg. 1], to compress a tensor to a target accuracy. For a
d-way tensor \scrY \in \BbbR n1\times \cdot \cdot \cdot \times nd , TT-SVD begins with a truncated SVD of the mode-1
unfolding Y(1) \in \BbbR n1\times n2...nd

Y(1) =U1\Sigma 1V1 +E1(4)

with orthonormal left singular vectors U1 \in \BbbR n1\times r1 and orthogonal \Sigma 1V1 \in \BbbR r1\times n2...nd .
Then, \Sigma 1V1 needs to be compressed. This process uses the fact that orthonormality
of the left singular vectors guarantees UT

1 E1 = 0, so that multiplying Y(1) on the left
by U1 leads to

UT
1 Y(1) =\Sigma 1V1.(5)

Now, the matrix \Sigma 1V1 can be reshaped to form \scrZ \in \BbbR r1n2\times n3\times \cdot \cdot \cdot \times nd , and a truncated
SVD is computed for its mode-1 unfolding

Z(1) =U2\Sigma 2V2 +E2(6)

with U2 \in \BbbR r1n2\times r2 and \Sigma 2V2 \in \BbbR r2\times n3...nd . The process then repeats analogously
to (5) and (6) until all dimensions are considered. The left singular vectors Ui \in
\BbbR ri - 1ni\times ri of each decomposition become the first d - 1 TT-cores through reshaping,

\scrG i = reshape (Ui, [ri - 1, ni, ri])\in \BbbR ri - 1\times ni\times ri .(7)

The final core consists of the right singular vectors scaled with their respective singular
values from the final truncated SVD.

The truncation errors for each unfolding described above need to be carefully
chosen to ensure a guaranteed relative error bound \varepsilon \in [0,1] with respect to the
Frobenius norm. Specifically, choosing a dimension-dependent truncation error ac-
cording to \delta = \varepsilon \surd

d - 1
\| \scrY \| F ensures that the computed TT-approximation \^\scrY has a

relative error less than \varepsilon , i.e., \| \scrY - \^\scrY \| F \leq \varepsilon \| \scrY \| F [22, Thm. 2.2].
Once a TT is computed, basic algebraic operations, such as addition and mul-

tiplication, can be computed in closed form. For example, two d-way tensors in
TT-format with cores \{ \scrG i\} di=1 and \{ \scrH i\} di=1 can be added if both of the tensors have
the size n1\times \cdot \cdot \cdot \times nd. The resulting tensor \scrD = \scrG +\scrH is calculated using the following
rule:

\scrD m(jm) =

\left\{

\Bigl[
\scrG 1(j1) \scrH 1(j1)

\Bigr]
, m= 1;\Biggl[

\scrG m(jm) 0

0 \scrH m(jm)

\Biggr]
, m= 2, . . . , d - 1;\Biggl[

\scrG d(jd)
\scrH d(jd)

\Biggr]
, m= d,

(8)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM A1051

where \scrG m(jm) \in \BbbR rm - 1\times rm denotes the jmth slice of the mth TT-core \scrG m. If \scrG has
TT-ranks ri and \scrH has TT-ranks \=ri, the sum \scrD will have the TT-ranks \^ri = ri + \=ri
with the exception of \^r0 = \^rd = 1.

2.2. Existing incremental tensor decompositions. This section discusses
two existing approaches for solving Problem 1: the first-order adaptive tensor train
decomposition (TT-FOA) [27] and the incremental tensor train decomposition (ITTD)
[15].

There are two main steps of incremental procedures: (1) preprocessing the newly
arrived tensor \scrY k+1 \in \BbbR n1\times \cdot \cdot \cdot \times nd and (2) updating the TT-cores of the previous
accumulation tensor \scrX k to obtain new TT-cores for \scrX k+1 with this information.
Below we describe how TT-FOA and ITTD handle these two steps.

Preprocessing \scrY k+1. At time k+1, TT-FOA poses the problem of preprocessing
the new tensor \scrY k+1 using the TT-cores of the approximate accumulation \^\scrX k as the
following regularized optimization problem:

gk+1 = argmin
g\in \BbbR rd\times 1

\| \scrY k+1 - \^\scrX k
(d+1)\times 1g\| 2F +

\rho

2
\| g\| 22,(9)

where gk+1 is the representation of \scrY k+1 as the (d+1)th TT-core of the accumulation
\scrX k, \rho is a small regularization parameter, and the contraction of first d TT-cores
\^\scrX k \in \BbbR n1\times \cdot \cdot \cdot \times nd\times rd is computed as

\^\scrX k = \scrG 1 3\times 1 \cdot \cdot \cdot 3\times 1 \scrG d.(10)

Note that these first d cores are common for all compressed data, and only the final
core is unique to a particular datum. In other words, one can view the first d cores as
the basis of approximation that is common to all the data and the final core as the
coefficients of this basis that are specific to each datum. Without the regularization
term, the optimal solution gk+1 would be the projection of \scrY k+1 onto the basis de-
fined by \^\scrX k. Thus, any component of the new data not represented by the existing
accumulation would be discarded. The regularization biases the solution to be closer
to zero.

In [27], the optimization problem is solved using the randomized sketching tech-
nique [16]. The closed-form solution is

gk+1 =
\Bigl(
\scrL (\^Xk

(d))
T\scrL (\^Xk

(d)) + \rho Ird

\Bigr) - 1

\scrL (\^Xk
(d))

T\scrL (yk+1)(11)

with \^Xk
(d) \in \BbbR n1...nd\times rd as the mode-d unfolding of \^\scrX k, yk+1 \in \BbbR n1...nd as the reshaping

of \scrY k+1 into a vector, and \scrL (\cdot) as the sketching map that samples the same set of
rows from \^Xk

(d) and yk+1.

ITTD follows another approach. It reshapes the streamed d-way tensor \scrY k+1 to
be a d+1-way tensor with size n1\times \cdot \cdot \cdot \times nd\times 1 and computes the TT-decomposition
of the reshaped tensor using the TT-SVD algorithm, without leveraging any infor-
mation from the accumulation tensor. As a result, it requires the computation of a
new sequence of singular value decompositions to discover an entirely new basis---a
computation step not needed by TT-FOA or our proposed approach.

Updating the TT-approximation of \scrX k to that of \scrX k+1. TT-FOA assumes fixed
TT-ranks and adopts a gradient descent procedure to update the TT-cores of \scrX k.
With this fixed-rank assumption, TT-FOA cannot guarantee a predefined upper

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A1052 AKSOY, GORSICH, VEERAPANENI, AND GORODETSKY

bound for representation error except in the limit. TT-FOA uses the following opti-
mization objective to update the TT-cores of \scrX k :

\scrG i = argmin
\scrG \in \BbbR ri - 1\times ni\times ri

k+1\sum
j=1

\lambda k+1 - j\| \scrY j - \scrA i (i+1)\times 1 \scrG (i+2)\times 1 \scrB ji \| 2F ,(12)

where

\scrA i = \scrG 1 3\times 1 \cdot \cdot \cdot 3\times 1 \scrG i - 1,

\scrB ji = \scrG i+1 3\times 1 \cdot \cdot \cdot 3\times 1 \scrG d 3\times 1 gj ,
(13)

and \lambda \in (0,1] is the forgetting factor discounting the effect of previous tensors. Note
that only the superscript of the forgetting factor \lambda is for exponentiation. gj denotes
the coefficient vector representing \scrY j in the (d + 1)th TT-core. Note that the ob-
jective function updates the ith core \scrG i independent from the other cores and allows
updating the cores in parallel. The TT-FOA algorithm provides a recursive approach
to efficiently update this core, and we leave further details to [27].

Next, we describe how ITTD updates the accumulated tensor. Recall that at
ITTD, this update is preceded by reshaping the d-way tensor \scrY k+1 into a d + 1-
way tensor with the (d + 1)th dimension as 1 and calculating an independent TT-
decomposition for \scrY k+1. ITTD then merges the newly compressed tensor with the
existing accumulation through a specific addition operation. To this end, the TT-
core of \scrY k+1 corresponding to the growing dimension is padded with zeros so that
the growing dimension becomes (k + 1). The same padding procedure is repeated
for the TT-core of \scrX k so that the growing dimension becomes (k + 1). This zero-
padding process is done to ensure the dimensional consistency between the two TT-
representations. While padding zeros to the TT-cores, the ITTD algorithm places the
padding tensors so that both tensors can be added without interfering with each other.
The ITTD algorithm then combines the TT-cores of the streamed tensor \scrY k+1 and
the existing TT-cores of \scrX k by adding them in TT-format using the rule shown in (8).
After the addition of these two tensors in TT-format, the TT-ranks are the sum of
the component ranks. Therefore, in an optional final step of the ITTD algorithm, the
TT-rounding procedure of [22, Alg. 2] is executed to reorthogonalize and recompress
the TT-cores after addition.

2.3. Limitations of existing approaches. This section discusses the short-
comings of the existing methods in the literature.

The main limitation of TT-FOA is that the TT-representation error cannot be
guaranteed for two reasons. First, due to the random initialization and the recursive
update scheme, the TT-FOA algorithm starts with a high representation error. As
time progresses and new observations become available, this error converges to a
steady-state value. However, the lower bound of this steady-state value depends on
the second limitation---that the TT-ranks of the accumulation are fixed as an input
to the TT-FOA algorithm. If the selected TT-ranks are insufficient to represent the
data accurately, there is no choice but to restart the entire TT-FOA algorithm with
higher TT-ranks. Furthermore, the forgetting factor influences the TT-cores of the
accumulation, so that representing the recently streamed tensors is more important
than the earlier parts of the accumulation. This results in a loss of representation
accuracy if the information in the tensor stream varies over time.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM A1053

On the other hand, the approach we propose does not require time to converge to
a steady-state error for an accumulation since truncated SVD computes the best-low-
rank approximation. Furthermore, when the current TT-ranks of the decomposed ac-
cumulation are not sufficient to represent the streamed tensor \scrY k+1 up to a prescribed
precision, our approach increases the TT-ranks accordingly to meet the precision cri-
terion. Most importantly, our approach guarantees that the whole accumulation is
represented within their prescribed precision bounds for all times.

The limitation of the ITTD algorithm stems from the inefficiencies of using the
existing TT-approximation of accumulation \scrX k to aid the incorporation of the new
data tensor. If the streamed data is highly structured, the TT-SVD step in ITTD is
likely to return TT-cores that are redundant with the TT-cores of the accumulation.
Therefore, the addition in TT-format likely results in linearly dependent TT-cores
and superfluous TT-ranks that make TT-rounding an obligatory step for adequate
compression.

In the case of an unbounded tensor stream, such a rounding procedure is required;
otherwise, the TT-cores would grow without bound. However, the rounding procedure
has a complexity that scales with the cube of the TT-ranks. This leads to a vicious
cycle between rank growth and speed for ITTD. Putting off TT-rounding allows faster
execution time, but the rank growth causes a cubic increase in time for future rounding
attempts. On the other hand, avoiding rounding results in unbounded rank growth,
which makes the rounding procedure impossible due to memory limitations.

We provide a more controlled rank growth by using the TT-cores of \scrX k as a foun-
dation and expanding them only with complementing information obtained through
\scrY k+1. Furthermore, for the edge case where the current TT-cores of the accumulation
can represent the streamed data sufficiently accurate, our method can skip updating
the TT-cores of the accumulation.

In the next section, we present our incremental TT algorithm, which provides a
solution to all the shortcomings of existing incremental TT-decomposition algorithms
in detail.

3. Methodology: The TT-ICE algorithm. In this section, we present a new
incremental TT-decomposition algorithm. Similar to the existing work, we tackle the
problem of computing the incremental TT-decomposition of tensor streams in two
steps: preprocessing and update. However, a distinguishing feature of our approach
is that it processes and updates each dimension sequentially in a single pass. Fur-
thermore, the subsequent algorithm considers a slightly generalized setting in which
nk+1
d+1 tensors become available during the k + 1th increment. Equivalently, this can

view the new data at increment k + 1 as a tensor with an additional dimension
\scrY k+1 \in \BbbR n1\times \cdot \cdot \cdot \times nd\times nk+1

d+1 .

3.1. Overview. This section walks through the steps of TT-ICE and presents
a pseudocode for TT-ICE.

The proposed algorithm updates the TT-cores \{ \scrG ki \} d+1
i=1 of the approximate accu-

mulation tensor \^\scrX k to obtain updated cores \{ \scrG k+1
i \} d+1

i=1 of the approximate accumu-
lation tensor \^\scrX k+1. Let \{ Uk

i \} d+1
i=1 denote the reshapings of the cores at increment k

according to (7); these will then be updated to obtain \{ Uk+1
i \} d+1

i=1 . At each increment,
these matrices will be orthonormal, and the update will ensure they remain orthonor-
mal. Similarly, we will update the ranks \{ rki \} d+1

i=0 to \{ rk+1
i \} d+1

i=0 . The approach is
provided in Algorithm 3.1, and we describe each step next.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A1054 AKSOY, GORSICH, VEERAPANENI, AND GORODETSKY

Algorithm 3.1 TT-ICE: Incremental update of a tensor train decomposition.

1: Input

2: Uk
i

d+1

i=1
reshaped cores of the TT-decomposition of the accumulation X k

3: Yk+1 ∈ Rn1×···×nd×nk+1
d+1 new tensor

4: { i}di=1 SVD truncation tolerances

5: Output

6: Uk+1
i

d+1

i=1
updated cores for the accumulation X k+1

7: Preprocessing the first dimension
8: Y1 = reshape Yk+1, n1, n2 . . . n

k+1
d+1

9: Rk
1 = I − Uk

1U
kT

1 Y1

10: Uk,pad
1 ← Uk

1 First core has no padding
11: for i = 1 to d− 1 do
12: Updating ith core

13: Uk
Ri
, rRi , V

k
Ri

← SVD Rk
i i Ri ∈ Rrki−1ni×rRi

14: Uk+1
i ← Uk,pad

i Uk
Ri

15: Uk,pad
i+1 ← reshape

reshape Uk
i+1, [r

k
i , ni+1r

k
i+1]

0rRi
×ni+1rki+1

, [rk+1
i ni+1, r

k
i+1] Pad for rank compat.

16: Preprocessing the subsequent dimensions of Y
17: Yi+1 ← reshape Uk+1T

i Yi, [r
k+1
i ni+1, ni+2 · · ·nk+1

d+1]

18: Rk
i+1 ← I − Uk,pad

i+1 Uk,padT

i+1 Yi+1

19: end for
20: Updating the dth core
21: Uk

Rd
, rRd

, V k
Rd

← SVD Rk
d d

22: Uk+1
d ← Uk,pad

d Uk
Rd

23: Updating the last core

24: Yd+1 ← Uk+1T

d Yd No need to reshape for Yd+1 since Uk+1T

d Yd ∈ Rrk+1
d ×nk+1

d+1

25: Uk+1
d+1 Uk,pad

d+1 Yd+1

Gk
i →Gk+1

i

k+1

Preprocessing the first dimension of \scrY k+1. The first dimension is processed by
projecting the reshaped tensor Y1 \equiv Y k+1

(1) onto the orthogonal complement of the

space spanned by the first dimension Uk
1 through

Rk
1 = Y k+1

(1) - Uk
1U

kT

1 Y k+1
(1) =

\Bigl(
I - Uk

1U
kT

1

\Bigr)
Y1, Rk

1 \in \BbbR n1\times n2\cdot \cdot \cdot nk+1
d+1 ,(14)

as provided in line 9. The column-space of this residual is orthogonal to Uk
1 , and

the corresponding basis is extracted in the updated phase for each dimension via the
truncated SVD.

Updating the ith core \scrG ki \rightarrow \scrG k+1
i . The update step now uses both the residual Rk

i

and an intermediate, padded version of the ith core Uk,pad
i to compute the updated

core Uk+1
i . First the residual is decomposed via the truncated SVD,

Rk
i =Uk

Ri
\Sigma k

Ri
V k
Ri

+Ek
i =Uk

Ri
V \ast
Ri

+Ek
i , \| Ek

i \| F = \epsilon i,(15)

where the second equality multiplies the singular value matrix and the right singular
vectors. The left singular vectors are orthogonal to Uk,pad

i , so the updated basis can
be obtained by appending these new directions as in line 14,

Uk+1
i =

\Bigl[
Uk,pad
i Uk

Ri

\Bigr]
\in \BbbR rk+1

i - 1 ni\times (rk+1
i),(16)

where the new TT-rank becomes rk+1
i = rki + rRi

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM A1055

The updated TT-core becomes \scrG k+1
i = reshape(Uk+1

i , [rk+1
i - 1 , ni, r

k+1
i]). Note that

this update increases the rank between dimensions i and i+ 1 from rki to rk+1
i . This

new dimension causes a discrepancy that prohibits the contraction between the ith
and i+ 1th cores. Therefore, the i+ 1th core must be padded with zeros,

Uk,pad
i+1 \leftarrow reshape

\biggl(\biggl[
reshape

\bigl(
Uk
i+1, [r

k
i , ni+1r

k
i+1]

\bigr)
0rRi

\times ni+1rki+1

\biggr]
, [rk+1

i ni+1, r
k
i+1]

\biggr)
.(17)

Note that this padding leaves Uk,pad
i+1 as orthonormal and does not change the span

defined by the components of the first rki rows of the reshaping.
After this next core, we have a partially updated representation of the accumu-

lation for \^\scrX k+1,

\^\scrX k+1 = \scrG k+1
1 3\times 1 \cdot \cdot \cdot 3\times 1 \scrG k+1

i 3\times 1 \scrG k,padi+1 3\times 1 \scrG ki+2 3\times 1 \cdot \cdot \cdot 3\times 1 \scrG kd+1,(18)

where \scrG k,padi+1 refers to the padded core formed by reshaping Uk,pad
i+1 following the

update in (17). After this step, we can proceed to preprocess in preparation for
updating the next dimension.

Preprocessing the subsequent dimensions of \scrY k+1. Preprocessing preparation for
the update of the next dimension begins by updating the projection of the new data
onto the updated core and reshaping

Yi+1 = reshape
\Bigl(
Uk+1T

i Yi, [r
k+1
i ni+1, ni+2 \cdot \cdot \cdot nk+1

d+1]
\Bigr)
.(19)

This projection uses the updated tensor cores Uk+1
i and therefore has dimensions

corresponding to the updated rank rk+1
i . Then, the residual with respect to the span

of the next core is obtained via a projection onto the orthogonal complement to the
existing space,

Rk
i =

\Bigl(
I - Uk,pad

i Uk,padT

i

\Bigr)
Yi+1.(20)

Updating the last core. The procedure in (19)--(17) is repeated sequentially for
the first d dimensions. Then after updating Uk,pad

d to Uk+1
d and padding Uk

d+1 with

zeros as in (17), projecting Yd onto Uk+1
d as in line 24 yields Yd+1, with which we can

update Uk,pad
d+1 as

Uk+1
d+1 \leftarrow

\Bigl[
Uk,pad
d+1 Yd+1

\Bigr]
(21)

and obtain the representation for \^\scrX k+1 in TT-format.

3.2. Analysis. This section provides proof that TT-ICE can achieve and main-
tain a target accuracy throughout the compression process.

We first show that Algorithm 3.1 provides guaranteed reconstruction error of
a new tensor given appropriate truncation of the truncated SVDs. Following the
completion of TT-ICE, the approximation of the most recently compressed data point
can be obtained by

\^\scrY k+1 = \scrG k+1
1 3\times 1 \cdot \cdot \cdot 3\times 1 \scrG k+1

d 3\times 1\scrG k+1
d+1 [- nk+1

d+1 :],(22)

where the index [- nk+1
d+1 :] denotes the last nk+1

d+1 columns of the core, as seen in (21).

Recall that \scrG k+1
d+1 is a matrix and that the columns \scrG k+1

d+1 [- nk+1
d+1 :] are the only elements

of the updated accumulation that are unique to the (k + 1)th data point. We now
show that the algorithm enables a well-controlled approximation error of this latest
tensor.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A1056 AKSOY, GORSICH, VEERAPANENI, AND GORODETSKY

Theorem 2. Let \{ Uk
i \} d+1

i=1 denote the unfolded TT-cores of the approximate ac-

cumulation \^\scrX k, \scrY k+1 be a new streamed tensor, and \{ \epsilon i\} di=1 be the SVD truncation
tolerances; then the TT-ICE algorithm computes a TT-approximation \^\scrY k+1 (22) sat-
isfying

\| \scrY k+1 - \^\scrY k+1\| F \leq

\sqrt{} d\sum
i=1

\epsilon 2i .(23)

Proof. The proof is similar to that of [22, Thm 2.2] and is by induction. For
d= 1, the statement follows from the properties of the truncated SVD.

Now we consider an arbitrary d> 1. The incremental updates start with the first
dimension. We start with processing the first core, which works on the first unfolding
of the new data. First, we show that computing the SVD of the residual leads to a low-
rank approximation of Y k+1

(1) with an approximation error bounded by a controlled

truncation tolerance. The definitions of the residual and projection given by (14)
lead to

Y k+1
(1) =Uk

1U
kT

1 Y k+1
(1) +Rk

1 =Uk
1U

kT

1 Y1 +Uk
R1

V k
R1

+Ek
1(24)

=Uk+1
1

\biggl[
UkT

1 Y1

V k
R1

\biggr]
\underbrace{} \underbrace{}

B1

+Ek
1 =Uk+1

1 B1 +Ek
1 ,

where the third equality appends the existing basis Uk
1 and the new directions obtained

from the SVD of the residual Uk
R1

to form the updated core Uk+1
1 . Thus, after the

first dimension is processed, the first core of \scrG k+1
1 is obtained, as a reshaping of

Uk+1
1 . Equation (24) demonstrates that this core is multiplied by a tensor \scrB 1 \in

\BbbR rk+1
1 n2\times n3\cdot \cdot \cdot nk+1

d+1 that has reshaping B1 \in \BbbR rk+1
1 \times n2\cdot \cdot \cdot nk+1

d+1 , and that the truncated
SVD implies the approximation error \epsilon 21:

\| Y k+1
(1) - Uk+1

1 B1\| 2F \leq \epsilon 21.(25)

The algorithm then proceeds to decompose the still high-dimensional B1 into an
approximation. Let \^B1 denote this approximation of the remaining dimensions so
that we now seek to bound the error

\| \scrY k+1 - \^\scrY k+1\| 2F = \| Y k+1
(1) - Uk+1

1
\^B1\| 2F .(26)

Next, this error can be rewritten in terms of the known error (25) and the subsequent
approximation error incurred by \^B1. To this end, add and subtract the exact B1 to
obtain

\| \scrY k+1 - \^\scrY k+1\| 2F = \| Y k+1
(1) - Uk+1

1
\^B1\| 2F = \| Y k+1

(1) - Uk+1
1

\Bigl(
\^B1 +B1 - B1

\Bigr)
\| 2F(27)

= \| Y k+1
(1) - Uk+1

1 B1\| 2F + \| Uk+1
1

\Bigl(
B1 - \^B1

\Bigr)
\| 2F(28)

\leq \epsilon 21 + \| B1 - \^B1\| 2F ,(29)

where Uk+1
1 has orthonormal columns and the inequality in (29) arises from (25).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM A1057

At this stage of the algorithm, we have updated Uk+1
1 and padded Uk

2 with rR1\times
n2r

k
2 zeros according to (17). The rest of the algorithm proceeds by now performing

the same approximation for B1, beginning with a projection onto the zero padded
second core, Uk,pad

2 . First we note that the orthonormality of the left singular vectors

implies B1 = U
(k+1)T

1 Y k+1
(1) = U

(k+1)T

1 Y1 from (24). Combined with (19), these facts
imply that Y2 \equiv B1 up to a reshaping. Then the next residual becomes\Bigl(

I - Uk,pad
2 Uk,padT

2

\Bigr)
B1 \equiv

\Bigl(
I - Uk,pad

2 Uk,padT

2

\Bigr)
Y2 =Rk

2 .(30)

Similar to (24), we can expand B1 into the components parallel to the space spanned
by the padded by Uk,pad

2 and orthogonal to this space so that

B1 =Uk,pad
2 Uk,padT

2 B1 +Rk
2 =Uk,pad

2 Uk,padT

2 Y2 +Uk
R2

V k
R2

+Ek
2(31)

=Uk+1
2

\Biggl[
Uk,padT

2 Y2

V k
R2

\Biggr]
\underbrace{} \underbrace{}

B2

+Ek+1
2 =Uk+1

2 B2 +Ek
2 .

Similar to (25), the truncated SVD for this dimension ensured \| Ek
2 \| 2F \leq \epsilon 22. Then,

parallel to (27)--(29), this time we expand the error in B1 according to

\| B1 - \^B1\| 2F = \| B1 - Uk+1
2

\^B2\| 2F
= \| B1 - Uk+1

2

\Bigl(
\^B2 +B2 - B2

\Bigr)
\| 2F

= \| B1 - Uk+1
2 B2\| 2F + \| Uk+1

2

\Bigl(
B2 - \^B2

\Bigr)
\| 2F

\leq \epsilon 22 + \| B2 - \^B2\| 2F .

(32)

If we rewrite (31) for Bd - 1, we see that

Bd - 1 =Uk,pad
d Uk,padT

d Bd - 1 +Rk
d \equiv Uk,pad

d Uk,padT

d Yd +Uk
Rd

V k
Rd

+Ek
d(33)

=Uk+1
d

\Biggl[
Uk,padT

d Yd

V k
Rd

\Biggr]
\underbrace{} \underbrace{}

Bd

+Ek+1
d =Uk+1

d Bd +Ek
d

with Bd \in \BbbR rk+1
d \times nk+1

d+1 , which is equal to Yd+1. We directly append Yd+1 to the
d + 1th core and conclude our update procedure for \scrY k+1. Therefore, for a d + 1
dimensional tensor, repeating the update for the first d dimensions successively yields
the approximation error

\| \scrY k+1 - \^\scrY k+1\| 2F \leq
d\sum

i=1

\epsilon 2i .(34)

Computing the square root of this term yields (23) and thus concludes our proof.

A straightforward corollary shows that TT-ICE can then ensure that the com-
pression of the new data point can be achieved to any desired tolerance.

Corollary 3. Let \{ Uk
i \} d+1

i=1 denote the unfolded TT-cores of the approximate ac-
cumulation \^\scrX k, and let \scrY k+1 be a new streamed tensor. If \epsilon i = \epsilon = \varepsilon des\| \scrY k+1\| F /

\surd
d,

then

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A1058 AKSOY, GORSICH, VEERAPANENI, AND GORODETSKY

\| \scrY k+1 - \^\scrY k+1\| F
\| \scrY k+1\| F

\leq \varepsilon des(35)

for any \varepsilon des > 0.

Proof. The proof is a direct result of Theorem 2. If we assume \epsilon i = \epsilon for all i and
simply set \sqrt{} d\sum

i=1

\epsilon 2i = \epsilon
\surd
d= \varepsilon des\| \scrY k+1\| F ,(36)

we can ensure the desired relative error upper bound \varepsilon des by truncating the SVD on
line 21 of TT-ICE at \epsilon = \varepsilon des\| \scrY k+1\| F /

\surd
d.

The last step is to ensure that the update of \scrX k does not reduce the approximation
error of the previously compressed elements \scrY i for i\leq k.

Theorem 4. Let \{ Uk
i \} d+1

i=1 denote the unfolded TT-cores of the approximate ac-
cumulation \^\scrX k such that the approximation of any existing tensor \scrY \ell satisfies \| \scrY \ell -
\^\scrY \ell \| F \leq \epsilon \| \scrY \ell \| F for \ell = 1, . . . , k, and \epsilon > 0. Let \scrY k+1 be a new streamed tensor
and \{ \epsilon i\} di=1 be the SVD truncation tolerances; then the updated TT-cores \{ Uk+1

i \} d+1
i=1

computed by TT-ICE represent an approximate accumulation \^\scrX k+1 that still satisfies
\| \scrY \ell - \^\scrY \ell \| F \leq \epsilon \| \scrY \ell \| F . for \ell = 1, . . . , k.

Proof. The proof shows simply that the core modifications performed by TT-ICE
have no impact on the representation of earlier tensors. First recall from (22) that
the approximation of the \ell th tensor is given by

\^\scrY \ell = \scrG k1 3\times 1 \cdot \cdot \cdot 3\times 1 \scrG kd 3\times 1\scrG kd+1

\bigl(
\scrY \ell

\bigr)
, \ell = 1, . . . , k,(37)

where we slightly abuse the notation by letting \scrG kd+1

\bigl(
\scrY \ell

\bigr)
denote the columns of \scrG kd+1

corresponding to \scrY \ell .
First, we note that TT-ICE only appends columns to the last core, so that the

columns corresponding to the \ell th tensor are unchanged when \scrG kd+1 is updated to

\scrG k+1
d+1 . Thus it remains to show that the portions of \scrG ki that multiply together and

finally multiply the corresponding columns of \scrG kd+1 remain unchanged as the Uk
i are

updated to Uk+1
i .

Let Gk
i [i1] \in \BbbR ri - 1\times ri denote the slice of each TT-core for i = 1 . . . ni. Then (37)

can be written for each element of \scrY \ell according to

\^\scrY \ell (i1, . . . , id, :\scrY \ell) = \scrG k1 [i1]\scrG k2 [i2] \cdot \cdot \cdot \scrG kd [id]\scrG kd+1[:\scrY \ell],(38)

where [: \scrY \ell] is used to denote the columns of the last core pertaining to \^Y \ell so that
\scrG kd+1[: \scrY \ell] \equiv \scrG kd+1

\bigl(
\scrY \ell

\bigr)
. Next, the zero padding and column appending of each Uk

i

imply the following relationship between Gk
i and Gk+1

i :

\scrG k+1
j [ij] =

\left\{

\Bigl[
\scrG k1 [i1] L1

\Bigr]
, j = 1;

\Biggl[
\scrG kj [ij] Lj,1

0 Lj,2

\Biggr]
, j = 2, . . . , d;

\Biggl[
\scrG kd+1[id+1]

0

\Biggr]
, j = d+ 1,

(39)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM A1059

where the zeros in the lower left block come from the padding, and the Lj,l matrices
arise from appending the new directions. Now the representation of the \ell th tensor in
the stream with the new cores becomes

\^\scrY \ell =
\bigl[
\scrG k1 [i1] L1

\bigr] \biggl[\scrG k2 [i2] L2,1

0 L2,2

\biggr]
\cdot \cdot \cdot

\biggl[
\scrG kd [id] Ld,1

0 Ld,2

\biggr] \biggl[
\scrG kd [id+1]

0

\biggr]
(40)

= \scrG k1 [i1]\scrG k2 [i2] \cdot \cdot \cdot \scrG kd [id+1] = \^\scrY \ell ,

where the locations of the zeros enable the new terms to appropriately cancel all the
new terms. Thus the representation of previously compressed tensors does not change,
and therefore their reconstruction error remains the same after the core update.

3.3. Heuristics to improve performance. This section discusses three heuris-
tic modifications to TT-ICE to reduce the computational load and memory require-
ments of our approach.

These approaches aim to reduce the number of core updates between \scrX k and
\scrX k+1. First, we provide a metric based on TT-ranks to decide whether an attempt at
updating a TT-core should even be made. Second, when a new batch of nk+1

d+1 tensors
is presented at increment k+1, we describe an approach to subselect from this batch
to only perform an update with a smaller number of tensors. This update is based on
each of the approximation errors of individual tensors in the streamed batch. Third,
we propose a mechanism to determine when it is feasible to skip the core updating
process.

Core occupancy for reducing the number of cores to be updated. The TT-ICE
Algorithm 3.1 proposes a scheme for updating all the TT-cores \{ \scrG ki \} d+1

i=1 at each in-
crement. However, the new information provided by increment may not be uniform
throughout all these TT-cores. If we can detect the core where the most informa-
tion loss occurs, focusing update efforts on that core could increase the efficiency of
Algorithm 3.1.

We propose a heuristic named core occupancy to measure how much information
is already represented by a core to determine if it should be updated. Recall that the
ith TT-core is constructed by reshaping the left singular vectors Uk

i \in \BbbR rki - 1ni\times rki . As
a result, there are rki orthogonal vectors from the possible rki - 1ni basis vectors. For a
given TT-core, core occupancy represents the ratio of the truncation rank rki over the
maximum rank possible (the number of rows rki - 1ni). It can also be seen as a ratio
of the column to row ranks:

occupancy
\bigl(
\scrG ki

\bigr)
=

rki
rki - 1ni

.(41)

If a core has a high occupancy ratio, then we can skip its update.
Subselecting the observations of \scrY k+1 used to update \{ \scrG ki \} d+1

i=1 . If the new data
comes in a batch (i.e., nk+1

d+1 > 1), another way of reducing the computational cost
of updating the TT-cores is to use a reduced number of observations from the new
tensor \scrY k+1 to update the first d cores of the accumulation tensor. To subselect
which elements of the batch to use for the update, we first compute the projection of
\scrY k+1 onto TT-cores \{ \scrG ki \} d+1

i=1 and use the relative projection error of the individual
observations as a heuristic to select a subset of \scrY k+1. With a slight abuse of notation,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A1060 AKSOY, GORSICH, VEERAPANENI, AND GORODETSKY

we denote the ith observation in \scrY k+1 as \scrY k+1(i), where i= 1, . . . , nk+1
d+1. Let

\~\scrY k+1 be

the approximation of \scrY k+1 using the TT-cores \{ \scrG ki \} d+1
i=1 . Similarly, let \~\scrY k+1(i) denote

the ith observation in \~\scrY k+1. Then, the vector \varepsilon \scrY k+1 \in \BbbR nk+1
d+1 is vector of relative

errors of individual observations, where

\varepsilon \scrY k+1(i) =
\| \scrY k+1(i) - \~\scrY k+1(i)\| F

\| \scrY k+1(i)\| F
,(42)

for i= 1, . . . , nk+1
d+1.

Recall that we can use Algorithm 3.1 with truncated SVD and update the TT-
cores of \^\scrX k to \^\scrX k+1 so that \scrY k+1 is represented within a truncation error threshold.
Let \varepsilon des denote the determined relative error threshold as in Corollary 3. Before
attempting an update, we calculate the approximation error of each new data point
\varepsilon \scrY k+1 with the existing TT-cores using (42) and then compute its average, mean (\varepsilon \scrY k+1) .
If the average approximation error is greater than the desired error tolerance
(mean (\varepsilon \scrY k+1) > \varepsilon des), then we will proceed to update at least some of the cores.
In particular, we only update the TT-cores of the accumulation using the data points
for which the approximation error exceeds \varepsilon des. Let \scrD k+1 be that constructed new
(d+ 1)-way tensor with a reduced number of observations such that

\scrD k+1 =
\bigl\{
\scrY k+1(i) : \varepsilon \scrY k+1(i)> \varepsilon des

\bigr\} nk+1
d+1

i=1
.(43)

Since the algorithm operates on a subset of observations, the truncation parameter
needs to be adjusted accordingly. Using the same \varepsilon des as \scrY k+1 for \scrD k+1 enforces
a tighter relative error upper bound on \scrY k+1. This tighter error bound results in
increased TT-ranks that impair the compression performance. To avoid this, we need
to relax the truncation parameter \varepsilon des using the approximation error of the discarded
observations. Let \scrD k+1

C be the tensor constructed with those discarded observations

such that \scrD k+1
C =

\bigl\{
\scrY k+1(i) : \varepsilon \scrY k+1(i)\leq \varepsilon des

\bigr\} nk+1
d+1

i=1
. Then, we compute the relaxed

relative error tolerance \varepsilon upd for the tensor of selected observations \scrD k+1 as

\varepsilon upd =

\sqrt{}
(\varepsilon des\| \scrY k+1\| F)2 - \| \scrD k+1

C - \~\scrD k+1
C \| 2F

\| \scrD k+1\| 2F
,(44)

where \~\scrD k+1
C is the approximation of \scrD k+1

C using \{ Uk
i \} d+1

i=1 . The first term in the
numerator is the maximum amount of error that TT-ICE can allow for \scrY k+1 in
the Frobenius norm, the second term is the approximation error of the discarded
observations in the Frobenius norm, and the denominator is the Frobenius norm of
the tensor of selected observations. Since the discarded observations have a relative
error \leq \varepsilon des, subtracting the approximation error gives how much error TT-ICE can
allow if it only uses \scrD k+1 to update the TT-cores. The denominator functions as
a normalizing factor, converting the error in the numerator to a relative error for
incremental updates. Through \varepsilon upd, the low approximation error of the discarded
observations will be balanced by tolerating slightly more error for \scrD k+1 and the
overall approximation \^\scrY k+1 will have a relative error closer to \varepsilon des. Note that for
the edge case where all \varepsilon \scrY k+1(i) > \varepsilon des, we have \scrD k+1 = \scrY k+1 and \scrD k+1

C = \emptyset . This
results in \varepsilon upd = \varepsilon des, therefore providing a consistent method to update \varepsilon des.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM A1061

If the observations in the same batch have similar norms, we can approximate
(44) by replacing the norm operators with the count of observations in each tensor
| \cdot | and get

\varepsilon upd \approx
\varepsilon desn

k+1
d+1 - \varepsilon \scrD k+1

C
| \scrD k+1

C |
| \scrD k+1| ,(45)

where \varepsilon \scrD k+1
C

is the mean relative error of the observations in \scrD k+1
C computed analo-

gously to (42).
Through these modifications, we prevent a superfluous increase in TT-ranks. Af-

ter determining \varepsilon upd, we simply compute the truncation parameter for the SVD using
\varepsilon upd as \epsilon =

\varepsilon upd\surd
d
\| \scrD k+1\| F .

Skip updating the first d TT-cores. Our final heuristic is to skip updating the
cores if the average error of the tensors in a batch is less than the desired threshold:
mean (\varepsilon \scrY k+1)\leq \varepsilon des. We justify this heuristic via the following argument.

Let \varepsilon k+1 represent the relative error of approximating the new tensor via the
existing cores

\varepsilon k+1 =
\| \scrY k+1 - \~\scrY k+1\| F
\| \scrY k+1\| F

=

\sqrt{} \sum nk+1
d+1

i=1 \| \scrY k+1(i) - \~\scrY k+1(i)\| 2F\sum nk+1
d+1

i=1 \| \scrY k+1(i)\| 2F
,(46)

where \~\scrY k+1 is the approximation of \scrY k+1 with the existing TT-cores. If \varepsilon k+1 \leq \varepsilon des,
then the first d TT-cores of \scrX k can represent \scrY k+1 sufficiently accurately and do not
need updates to meet the desired accuracy. As a result, the error-truncated SVD
in line 13 of Algorithm 3.1 returns empty matrices and TT-ICE will return the first
d TT-cores without an update. In order to save invaluable computation time, we
can calculate \varepsilon k+1 using (46) and complete the core update by appending the TT-
representation of \scrY k+1 after projecting onto the TT-cores of \scrX k.

Let \^Y k+1 be the projection of \scrY k+1 onto the first d TT-cores \{ \scrG ki \} di=1. Then,
updating \scrG kd+1 is simply done by appending \^Y k+1 to \scrG kd+1 as

\scrG k+1
d+1 \leftarrow

\bigl[
\scrG kd+1

\^Y k+1
\bigr]
.(47)

However, an explicit computation of (46) can become computationally expensive
if the batch consists of a high number of observations. In that case, we investigate the
use of the surrogate of \varepsilon \scrY k+1 from (42) as an approximation to \varepsilon k+1. In future works,
this strategy might be adapted to sampling tensors in the batch to have a stochastic
approximation of the average. Meanwhile, the numerical experiments in section 4 use
mean(\varepsilon \scrY k+1) to determine if TT-ICE\ast should skip updating the first d TT-cores. As an
example, Figure 3 provides empirical proof that using the mean as an approximation
does not result in a violation of the relative error upper bound. However, note that
there might be other, more conservative heuristic measures available to approximate
\varepsilon k+1.

The pseudocode of the modified algorithm is provided in Algorithm 3.2. The
project function on line 36 projects \scrY k+1 sequentially onto \{ Uk+1

i \} di=1 and reshapes
into proper dimensions in a way similar to line 33.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A1062 AKSOY, GORSICH, VEERAPANENI, AND GORODETSKY

Algorithm 3.2 TT-ICE\ast : Incremental update of a tensor train decomposition with
heuristic performance upgrades.

1: Input

2: Uk
i

d+1

i=1
reshaped cores of the TT-decomposition of the accumulation X k

3: Y ∈ Rn1×···×nd×nk+1
d+1 new tensor

4: τ occupancy threshold (suggested=0.8)
5: εdes relative error upper bound

6: Output

7: Uk+1
i

d+1

i=1
updated cores for the accumulation X k+1

8: Check representation accuracy with existing TT-cores and Skip updating if sufficient

9: εY(i) ← (i)−Ỹ(i) F

(i) F

nk+1
d+1

i=1
Ỹ is the approximation of Y using Uk, and εY ∈ Rnk+1

d+1 as defined in (42)

10: if mean(εY) ≤ εdes then
11: {Uk+1

i }di=1 ← {Uk
i }di=1

12: else
13: Subselect observations

14: D ← {Y(j) : εY(j) > εdes}
nk+1
d+1

j=1 D ⊂ Y will be used at update

15: εupd ← (εdes F)2−(C−D̃C F)
2

2
F

D ∪DC = Y, D̃C is approximation of DC using Uk

16: =
εupd√

d F is the truncation parameter for SVD

17: Perform incremental updates with the selected observations
18: D1 = reshape(D, [n1, n2 . . . ndn

D
d+1])

D
d+1 is the number of selected observations

19: Uk,pad
1 ← Uk

1 First core has no padding
20: for i = 1 to d do
21: Check core Occupancy
22: if occupancy(Uk,pad

i) ≥ τ then

23: Uk+1
i ← Uk,pad

i

24: rk+1
i ← rki

25: Uk,pad
i+1 ← Uk

i+1

26: else
27: Perform incremental update

28: Rk
i = I − Uk,pad

i Uk,padT

i Di

29: Uk
Ri

← SVD Rk
i

30: Uk+1
i ← Uk,pad

i Uk
Ri

31: Uk,pad
i+1 ← reshape

reshape Uk
i+1, rki , ni+1r

k
i+1

0rRi
×ni+1rki+1

, [rk+1
i ni+1, r

k
i+1]

32: end if
33: Di+1 ← reshape(Uk+1T

i Di, [r
k+1
i ni+1, ni+2 . . . n

D
d+1])

34: end for
35: end if
36: Ŷ k+1 ← project(Yk+1, {Uk+1

i }di=1) Ŷ is obtained by sequentially projecting Yk+1 onto {Uk+1
i }di=1

37: Uk+1
d+1 Uk

d+1 Ŷ k+1 Ŷ k+1 Rrd×nk+1
d+1 are the columns

4. Experiments. In this section, we compare the performance of TT-ICE and
TT-ICE\ast with existing approaches in compressing large-scale data including videos
from gameplay sequences and grid data from physics-based simulations. In all the
experiments, the TT-SVD algorithm [22, Alg. 1] is applied to obtain an initial set
of TT-cores, and subsequently, the cores are updated using each of the incremental
algorithms. In all of the results provided, ITTDk corresponds to updating the TT-
cores of the accumulation using ITTD and performing TT-rounding [22, Alg. 2] after
every kth update step. For comparisons between TT-FOA and our approach, we refer
to Appendix B. We do not include it here because TT-FOA does not support rank
adaptation and does not offer an upper bound on approximation error. As a result,
it either performed poorly or was unable to handle the datasets considered.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM A1063

4.1. Evaluation criteria. This section contains performance metrics we use to
compare performance of algorithms.

The performance of the incremental algorithms is evaluated using three main
criteria. First, the compression ratio (CR) of the accumulation \scrX k with core sizes
n1 \times n2 \times \cdot \cdot \cdot \times nd+1 is defined as

CR=
number of elements of full tensor

number of parameters in compressed representation
=

\prod d+1
i=1 ni\sum d+1

i=1 ri - 1niri
,(48)

where ri is the ith TT-rank. Second, the relative reconstruction error (RRE) of the
same tensor is given by

RRE =
\| \scrX k - \^\scrX k\| F
\| \scrX k\| F

.(49)

Similarly, we can measure the error in the representation of unseen data: since the last
dimension of \scrX k provides a latent representation for individual observations stored
in the stream, as shown in (22), we can use the first d cores to estimate a latent
representation for unseen data by projecting onto the first d dimensions. We shall
call the error in the estimation the relative prediction error (RPE), which can again
be computed using the Frobenius error similar to RRE. An RPE lower than the target
tolerance \varepsilon des indicates that the existing basis of the accumulation is expressive enough
to represent this unseen data. Our final evaluation metric is the execution time, which
measures the CPU time spent executing the steps of the corresponding incremental
algorithms and does not include the time for data to load into memory.

4.2. Datasets and experiments. This section includes tests on two different
types of datasets (snapshots in Figure 1): (i) Raw pixel data from an ATARI game-
playing reinforcement learning (RL) agent [5] and (ii) Grid data from a numerical
simulation of self-oscillating gels [2].

4.2.1. ATARI gameplay sequences. This section includes tests of TT-ICE's
performance to compress raw pixel data.

The first dataset involves a sequential set of video game screenshots. It is often
useful to reduce the dimension of this type of video data to enable learning in the

(a) (b)

Fig. 1. Example visualizations from the datasets used in the compression experiments. (a) A
frame from a Ms.Pac-Man gameplay session. (b) Snapshots from self-oscillating gel simulation using
the simulation developed in [2].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A1064 AKSOY, GORSICH, VEERAPANENI, AND GORODETSKY

TT-ICE∗ TT-ICE SS Subselect ITTD5

0 1 2 3 4 5
·104

101

102

103

104

Number of frames in accumulation

C
om

p
re
ss
io
n
ti
m
e
(s
)

(a) \varepsilon des = 0.1.

0 1 2 3 4 5
·104

101

102

103

104

Number of frames in accumulation

C
om

p
re
ss
io
n
ti
m
e
(s
)

(b) \varepsilon des = 0.01.

Fig. 2. Comparison of execution time versus total number of observations in the tensor train
for different versions of TT-ICE, TT-ICE\ast , and ITTD [15] with two different \varepsilon settings. TT-ICE\ast :
full TT-ICE\ast algorithm with all heuristics; TT-ICE: TT-ICE; Subselect: subselecting frames from
runs; SS: subselecting frames from runs and skip updating the first d TT-cores; ITTD 5: ITTD with
rounding at every fifth increment step. ITTD has the worst compression time while TT-ICE\ast with
all heuristics performs best. ITTD fails to compress the entire stream for \varepsilon des = 0.01.

latent space. This dataset consists of a collection of gameplay screen captures from
various ATARI games. The dataset is collected using a video game-playing RL agent
trained by a Deep Q-Network model [20] from the RL-Baselines Zoo package [23] and
further trained using the Stable Baselines platform [13]. The ATARI games we used
are Ms.Pac-Man, Enduro, Seaquest, Q*bert, Breakout, Pong, and Beamrider. We
present the results of experiments for Ms.Pac-Man game captures in this section and
the rest of the games in the appendix.

Each game has multiple individual gameplay sessions, which we refer to as runs.
Each run may have different durations and therefore a different number of frames (see
Figure 1(a)) with dimensions 210\times 160\times 3 (Width\times Height\times RGB). Each individual
run is treated as an incremental unit and reshaped into a 5-way tensor of dimension
30\times 28\times 40\times 3\times nk

5 , where nk
5 is the number of frames in the kth run. Depending

on the duration of each gameplay sequence, each run consists of a varying number of
frames. Therefore, the 5-way tensors are stacked along the fifth dimension.

We compared TT-ICE, TT-ICE\ast , and ITTD5 on all of the different game datasets,
and the results are summarized in Table 1. A more detailed study of the efficiency of
each algorithm was done for Ms.Pac-Man. For the comprehensive experiments with
Ms.Pac-Man gameplay sequences, we used a training set of 60 runs for incremental
updates and a validation set of 160 runs to measure the prediction error on unseen
runs. This prediction tests the performance of the TT-format to find a suitable
latent space for describing Ms.Pac-Man frames. We present the results of detailed
experiments in Figures 2 to 4. In those figures, Subselect means updating TT-cores
using only the observations from \scrY k+1 with relative error higher than \varepsilon des and SS
means skipping updates for the first d TT-cores when mean(\varepsilon \scrY k+1)\leq \varepsilon des along with
Subselect heuristic. Please note that the Occupancy heuristic is used only when the
complete TT-ICE\ast algorithm is used.

For all other games in Table 1, we used a training set of 60 runs and a validation
set of 100 runs. Enduro and Pong were the only exceptions to that setup since they
had a much higher number of frames in each run. This resulted in much higher
memory requirements than all other games even just for storing the runs. Again,
due to the high number of frames per run, the validation tests required a significant

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM A1065

TT-ICE∗ TT-ICE SS Subselect ITTD5

0 1 2 3 4 5
·104

5 · 10−2

1 · 10−1

1.5 · 10−1

εdes = 0.1

Number of frames in accumulation

R
el
at
iv
e
E
rr
or

(a) \varepsilon des = 0.1 (Dotted line).

0 1 2 3 4 5
·104

5 · 10−3

1 · 10−2

3 · 10−2

1 · 10−1

2 · 10−1

εdes = 0.01

Number of frames in accumulation

R
el
at
iv
e
E
rr
or

(b) \varepsilon des = 0.01 (Dotted line).

Fig. 3. Comparison of mean RRE and mean RPE vs total number of observations in the tensor
train for different versions of TT-ICE, TT-ICE\ast and ITTD [15] with two different \varepsilon settings. We
present the mean RRE over compressed runs in the accumulation and mean RPE over the validation
set after each increment step. Data points connected with a solid line represent the mean RRE and
data points connected with a dashed line represent the mean RPE. Please refer to Figure 2 for a
description of the legend. For \varepsilon des = 0.1 TT-cores returned from ITTD have much lower RPE than
desired. RPE of TT-cores trained with TT-ICE and TT-ICE\ast converge to RRE as accumulation
size increases. ITTD fails to compress the entire stream for \varepsilon des = 0.01.

TT-ICE∗ TT-ICE SS Subselect ITTD5

0 1 2 3 4 5
·104

101

102

103

Number of frames in accumulation

C
om

p
re
ss
io
n
ra
ti
o

(a) \varepsilon des = 0.1.

0 1 2 3 4 5
·104

0

1

2

3

4

Number of frames in accumulation

C
om

p
re
ss
io
n
ra
ti
o

(b) \varepsilon des = 0.01.

Fig. 4. Comparison of compression ratio versus total number of observations in the tensor train
for different versions of TT-ICE, TT-ICE\ast , and ITTD [15] with two different \varepsilon settings. Please refer
to Figure 2 for a description of the legend. ITTD has the worst compression ratio while TT-ICE\ast

with all heuristics performs the best. ITTD fails to compress the entire stream for \varepsilon des = 0.01.

amount of time. Therefore we used a training set of 40 runs and a validation set of
40 runs. During the repetitions for different algorithms, the streaming order was the
same for all methods subject to investigation. All experiments were repeated for two
\varepsilon des settings, \varepsilon des = 0.1 and \varepsilon des = 0.01. Finally, an occupancy threshold of 0.8 is set
for this class of experiments.

Compression results. This section includes the results of experiments on
Ms.Pac-Man frames, and then comments on the compression experiments with other
ATARI games.

Figures 2(a) and 2(b) show the influence of each variation of TT-ICE on the
overall compression time and compare these results with ITTD5. In Figure 2(a),
ITTD5 performs worse than all of the TT-ICE variations at \varepsilon des = 0.1. Specifically,
Figure 2(a) depicts that implementing heuristic improvements provides at least 62\%
reduction in compression time. This improvement in compression time reaches its
peak when all of the heuristic upgrades are implemented (i.e., when the complete

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A1066 AKSOY, GORSICH, VEERAPANENI, AND GORODETSKY

TT-ICE\ast algorithm is used). Note that when the truncation tolerance is tightened to
\varepsilon des = 0.01, the problem with ITTD intensifies. This time, ITTD5 fails to compress
the full duration of the stream due to insufficient memory and fails at the 10th incre-
ment while attempting TT-rounding. On the other hand, TT-ICE and variations of
TT-ICE\ast display performances in parallel to the experiments with \varepsilon des = 0.1.

Figures 3(a) and 3(b) investigate a difference in the representation error of the
TT-cores trained with different algorithms. For each case, we present the mean RRE
over the compressed portion of the training set and the mean RPE over the entire val-
idation set after each increment. Figure 3(a) shows that all methods can successfully
represent the streamed data within the desired relative error upper bound \varepsilon des. Fur-
thermore, Figure 3(a) depicts that the mean RPE of TT-ICE and TT-ICE\ast converge
asymptotically to the mean RRE. Since the mean RPE represents the representation
quality of the validation set, these results indicate that a suitable basis is found prior
to observing the validation dataset itself. Once the basis to represent observations
within the desired accuracy is complete, TT-ICE will not be able to find any unique
orthogonal directions to expand the bases of TT-cores for a stream.

Figures 3(a) and 3(b) present the mean RPE for ITTD5 only at the steps where
rounding is performed and do not connect the data points with a dashed line. This
is caused by the fact that without reorthogonalization, TT-cores obtained through
ITTD are not suitable for assimilating data (projection and prediction). This is
an artifact caused by implementing an addition in TT-format and the uncontrolled
rank inflation and lack of core orthogonality. However, an interesting point from
Figure 3(a) is that the mean RPE falls well below the mean RRE for ITTD5 after
reorthogonalization. The results for TT-ICE and TT-ICE\ast are similar for \varepsilon des = 0.01
in Figure 3(b). Unfortunately, ITTD5 cannot display the same pattern in this case,
since it terminates prematurely due to insufficient memory.

Finally, Figures 4(a) and 4(b) indicate differences in compression ratio between
algorithms. Figure 4(a) shows that the TT-ICE variations have comparable perfor-
mance to each other. Furthermore, Figure 4(a) shows selecting any TT-ICE variation
results in almost two orders of magnitude higher compression over ITTD5. This sig-
nificantly lower compression ratio of ITTD also explains its reduction in mean RPE
after TT-rounding. The superfluous increase in TT-ranks allows the TT-cores trained
with ITTD to cover a much larger portion of the multidimensional basis. Right af-
ter reorthogonalization, this larger basis provides an increase in the generalization
capability of the TT-cores but also results in a much lower compression ratio. The
rounding step also provides a positive jump in the compression ratio, but when the
TT-cores are incremented further with ITTD, this improvement decays quickly. When
the relative error tolerance changes to \varepsilon des = 0.01, the low compression ratio problem
for ITTD5 is exacerbated where the compression ratio falls below the critical value
of 1 for ITTD5. Having a compression ratio lower than 1 means that TT-cores have
more entries than the original accumulation. Despite having a much lower compres-
sion ratio than the case with \varepsilon des = 0.1, all of the TT-ICE variations again perform
comparably with a compression ratio around 3.5\times .

To summarize, the investigations yielded a decrease in compression time, an in-
crease in compression ratio, and improved execution stability when TT-ICE is pre-
ferred over ITTD. Furthermore, investigations show an additional decrease in com-
pression time and an increase in compression ratio when TT-ICE\ast is preferred over
TT-ICE.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM A1067

4.2.2. Self-oscillating gel simulations. This section includes tests of TT-
ICE's performance to compress simulation outputs of high-dimensional PDEs.

When high-dimensional systems are of interest, the size of the simulation out-
puts can become prohibitive. In the extreme, even the storage of the data may
not be feasible. Streaming compression algorithms can become essential when the
outputs of a dynamical simulation become sequentially available. Moreover, tensor
decompositions can extract more information than incremental matrix decomposition
methods to be used to learn low-dimensional representations, for example, for inverse
design [1].

The second dataset arises from solutions of a parametric PDE that simulates the
motion of a hexagonal sheet of self-oscillating gels. The motion of the gel is governed
by the following time-dependent parametric PDE:

\mu
\partial r

\partial t
= fs (r,Ks, \eta) + fB (r) , \eta (x, y, t,A,k) = 1+A sin

\Bigl(
2\pi

\Bigl(
k
\sqrt{}

x2 + y2 - t
\Bigr) \Bigr)

,

(50)

where the bold terms indicate the input parameters to the forward model that define
the characteristics of the excitation as well as the mechanical properties of the gel.
More specifically, Ks denotes the stretching stiffness of the sheet, k determines the
wavenumber of the sinusoidal excitation, and A determines the amplitude of the wave
traveling on the sheet. Other terms governing the overdamped sheet dynamics are
internal damping coefficient \mu , material coordinates r = (x, y, z), stretching force fs,
bending force fb, rest strain \eta , and time t.

We uniformly sample from this three-dimensional space of input parameters to
obtain 6400 unique parameter combinations and then simulate each of those parameter
combinations using the approach in [2]. The simulations are chaotic, but we use
10 sequential timesteps from each simulation as our data. Specifically, we seek to
compress the x, y, and z coordinates of 3367 mesh nodes on a hexagonal gel sheet for
each time snapshot as shown in Figure 1(b).

To summarize, the data consists of 3367 \times 3 \times 10 tensors for each parameter
combination that contain the coordinate information of the mesh. We refer to those
output tensors as simulations for brevity and treat them as individual incremental
units. For compression experiments, each simulation is reshaped into tensors of size
7\times 13\times 37\times 3\times 10\times 1 and stacked along the sixth dimension to obtain the accumulation.
We conducted all the experiments on the machine M3 that has a Xeon Silver 4110
processor and 16GB memory. Figures 5 to 7 show the results of those experiments.
The occupancy threshold of TT-ICE\ast is set to 1 for this dataset. This prevents update
attempts when the basis for one dimension is fully explored (i.e., the TT-core has full
rank). Finally, we compute the mean of RRE over compressed simulations in the
accumulation.

Despite the suitability of TT-FOA to this tensor stream, we can't provide any
results for TT-FOA. Even when we assume that TT-FOA is initialized with the final
ranks of TT-ICE\ast with \varepsilon des = 0.1, the memory required by the auxiliary matrices,
matrix inversions, and Kronecker products in the algorithm exceeds the memory of
the machine M3 and fails at the first step.2

Compression results. This section includes the results of experiments on self-
oscillating gel simulation snapshots.

2When we repeat the same experiment with the machine M1, which has the same processor as
M3 and has higher memory, computing one step of the stream takes more than 1500s.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A1068 AKSOY, GORSICH, VEERAPANENI, AND GORODETSKY

TT-ICE∗ TT-ICE ITTD2 ITTD5

0 1,000 3,000 5,000 7,00010−2

100

103

105

Number of simulations in accumulation

C
om

p
re
ss
io
n
ti
m
e
(s
)

(a) \varepsilon des = 0.1.

0 1,000 3,000 5,000 7,00010−2

100

103

Number of simulations in accumulation

C
om

p
re
ss
io
n
ti
m
e
(s
)

(b) \varepsilon des = 0.01.

Fig. 5. Comparison of execution time versus total number of simulations in the tensor train for
Algorithm 3.1, Algorithm 3.2, and ITTD [15] with two different \varepsilon settings. TT-ICE\ast outperforms TT-
ICE by one order of magnitude. ITTD fails to compress the entire stream for both cases. TT-ICE\ast :
full TT-ICE\ast with all heuristics defined in section 3.3; TT-ICE: TT-ICE algorithm (Algorithm 3.1);
ITTD5: ITTD with rounding at every fifth increment step; ITTD2: ITTD with rounding at every
second increment step.

TT-ICE∗ TT-ICE ITTD2 ITTD5

0 1,000 3,000 5,000 7,000100

101

102

103

104

Number of simulations in accumulation

C
om

p
re
ss
io
n
R
at
io

(a) \varepsilon des = 0.1.

0 1,000 3,000 5,000 7,000100

101

102

103

104

Number of simulations in accumulation

C
om

p
re
ss
io
n
R
at
io

(b) \varepsilon des = 0.01.

Fig. 6. Comparison of compression ratio vs total number of simulations in the tensor train for
Algorithm 3.1, Algorithm 3.2, and ITTD [15] with two different \varepsilon settings. Please refer to Figure 5
for a description of the legend. TT-ICE\ast outperforms TT-ICE\ast but both methods show comparable
compression performances. ITTD fails to compress the entire stream for both cases.

TT-ICE∗ TT-ICE ITTD2 ITTD5

0 1,000 3,000 5,000 7,000

0.2

0.4

0.6

0.8

1

·10−1

εdes = 0.1

Number of simulations in accumulation

M
ea
n
R
R
E

(a) \varepsilon = 0.1.

0 1,000 3,000 5,000 7,000

0.2

0.4

0.6

0.8

1

·10−2

εdes = 0.01

Number of simulations in accumulation

M
ea
n
R
R
E

(b) \varepsilon des = 0.01.

Fig. 7. Comparison of mean RRE versus total number of simulations in the tensor train for
TT-ICE, TT-ICE\ast , and ITTD [15] with two different \varepsilon settings. Please refer to Figure 5 for a
description of the legend. TT-ICE\ast provides mean RRE closer to \varepsilon des in both cases. ITTD fails to
compress the entire stream for both cases.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM A1069

Unlike the previous set of experiments involving ATARI gameplay frames, ITTD
methods fail to compress the entire stream in both \varepsilon des settings due to insufficient
memory while attempting TT-rounding. In all scenarios, TT-ICE\ast outperforms TT-
ICE, but both algorithms are able to compress the entire stream successfully.

Figures 5(a) and 5(b) depict the differences in compression speed between algo-
rithms. Figure 5(a) shows that it takes more time for both ITTD2 and ITTD5 to
compress 1/20 of the entire stream than for TT-ICE and TT-ICE\ast to compress the en-
tire stream. Figure 5(a) also clearly illustrates the benefits of implementing heuristic
upgrades, since TT-ICE\ast compresses the entire stream an order of magnitude faster
than TT-ICE. This difference in compression time becomes less in Figure 5(b) with
\varepsilon des = 0.01 but TT-ICE\ast still provides a significant reduction in time in comparison
to TT-ICE. At \varepsilon des = 0.01, ITTD methods fail even earlier than before and compress
at most 1/50 of the entire stream.

Figures 6(a) and 6(b) present the differences in the compression ratio between
algorithms. Figure 7(a) shows that both TT-ICE and TT-ICE\ast achieve excessive
compression close to 104\times in the early stages of the stream and then exhibit a decay
in compression ratio. This behavior is related to the streaming order of the simulations
and is expected. Toward the beginning, the stream consists of simulations with similar
parameter combinations. This leads to simulations exhibiting similar motion patterns
and allows the accumulation to be represented with a small basis. Then, as the
stream progresses, the accumulation consists of simulations from a greater variety of
parameter combinations and calls for an expansion in the bases. The same pattern
repeats itself in Figure 6(b) for \varepsilon des = 0.01, but this time the decay is greater than
it was for \varepsilon des = 0.1. Since both ITTD methods fail to compress the entire stream,
we cannot make meaningful comments on their compression performance. However,
Figures 6(a) and 6(b) indicate that the peak compression achieved is consistently two
orders of magnitude less than that achieved by the TT-ICE methods.

Finally, Figures 7(a) and 7(b) indicate differences in reconstruction error between
algorithms. Figure 7(a) shows that TT-ICE\ast has a mean RRE slightly closer to
\varepsilon des than TT-ICE. On the other hand, Figure 7(b) shows that TT-ICE\ast has nearly
twice the error of TT-ICE, but this difference in mean RRE diminishes to almost a
constant offset as the stream progresses. In both Figures 7(a) and 7(b), ITTDmethods
start with lower mean RRE values. This can be explained by the significantly lower
compression performance of these methods, where the higher coverage in the bases
results in both lower compression and lower mean RRE. However, we cannot draw
meaningful conclusions for ITTD since both ITTD2 and ITTD5 fail prematurely.

Mean RRE tests conclude the experiments with self-oscillating gel simulations.
Similar to experiments with ATARI data, TT-ICE and TT-ICE\ast algorithms yield
reduced compression time, increased compression ratio, and improved execution sta-
bility over ITTD.

5. Conclusion. In this work, we proposed a new algorithm to incrementally
update a TT-decomposition to compress a stream of data. Our algorithm TT-ICE
improves on the existing state-of-the-art because (1) it maintains a desired error toler-
ance for all data increments, (2) it updates its ranks without excessive growth, and (3)
it maintains orthogonality of the TT-cores to enable efficient projection and predic-
tion for uncompressed data. We provide proof that the TT-ICE algorithm maintains
its accuracy throughout the compression process. We then provide three heuristics
to improve on this algorithm and show empirical evidence that they improve per-
formance with little sacrifice in accuracy. This enhanced version of TT-ICE is also

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A1070 AKSOY, GORSICH, VEERAPANENI, AND GORODETSKY

guaranteed to maintain the accuracy of the already compressed portion of the stream.
However, no such guarantee can be provided for the portion of the stream compressed
with TT-ICE\ast since heuristics are used in the first place. Experimental results on two
different types of data demonstrate the superior performance of TT-ICE over ITTD
and provide empirical proof of the additional benefits obtained from the heuristic up-
grades we implemented in TT-ICE\ast . For simulation data, TT-ICE\ast achieves twice the
compression ratio of TT-ICE in half the time. For image data, TT-ICE\ast achieves a
comparable, if not higher, compression ratio with up to 80\% reduction in the TT-ICE
time. Moreover, at resource-limited hardware, TT-ICE and TT-ICE\ast have proven
themselves to be reliable and performant compression methods.

Extensions of this work will attempt to theoretically justify the heuristics used
in TT-ICE\ast . It will also deploy the proposed methods to enable scalable machine
learning in the latent space identified by the compression, e.g., for inverse design [1]
and behavioral cloning [5].

Appendix A. Other ATARI games. This section includes the results of the
experiments with the other ATARI games and their discussion.

TT-ICE and TT-ICE\ast proved their performance in the first experiments with
Ms.Pac-Man frames. Next, we investigated the performance of algorithms across
different hardware combinations.

For these experiments, we focus our attention on TT-ICE, TT-ICE\ast , and ITTD,
and to understand performance across different hardware combinations, we tested
the algorithms on several machines. For each experiment, we detail the machine on
which it was conducted. The machines are a Dell Precision 7820 workstation with a
Xeon Silver 4110 processor and 32 GB memory, a Dell XPS-15 9570 laptop with an
i7-8750H processor and 16 GB memory, and a Dell Precision 7820 workstation with
a Xeon Silver 4110 processor and 16 GB memory. The machines are referred to in
Table 1 as M1, M2, and M3, respectively. Table 1 indicates improvements between
44.5\times and 56.7\times in compression and between 8.2\times and 23.5\times in time over ITTD5.

In Table 1, TT-ICE and TT-ICE\ast complete the compression of streams faster
than ITTD5. Furthermore, our proposed algorithms achieve at least an order of
magnitude higher compression ratio than ITTD5. In Table 1, ITTD5 fails without an
exception to compress the entire stream due to insufficient memory when \varepsilon des = 0.01.
This is caused by the high computational requirements of the rounding step in ITTD5
and becomes prohibitive even with \varepsilon des = 0.1 for games Beamrider and Enduro. The
only case where all three methods fail to compress the entire stream is Enduro with
\varepsilon des = 0.01 due to the limited memory of the machine. However, even in that case,
we see that TT-ICE can compress at least three times more frames than ITTD5.

An impressive point from Table 1 is the difference in number of frames used
between TT-ICE and TT-ICE\ast . By subselecting frames and skipping the update of
the first d TT-cores, TT-ICE\ast reduces the number of frames used in updates by up
to 97\% (Pong with \varepsilon des = 0.1) without any loss in mean RRE. The reduction in time
is also parallel with the reduction in the frames used. TT-ICE\ast achieves at least 48\%
reduction (Seaquest with \varepsilon des = 0.01) in execution time over TT-ICE.

In Table 1, Beamrider with \varepsilon = 0.01 is another insightful example, which shows
that implementing heuristics can be influential on the success of TT-ICE. In that case,
TT-ICE\ast successfully completes the decomposition of the stream, whereas TT-ICE
fails to complete the same task.

The additional experiments using ATARI data show that TT-ICE and TT-ICE\ast

can successfully compress streams across different hardware combinations. Further-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM A1071

Table 1
Summary statistics for the other ATARI games. Game: name of the game; Machine: codename

of the computer that conducted the experiments; Method: decomposition algorithm used (TT-ICE\ast :
Algorithm 3.2; TT-ICE: Algorithm 3.1; ITTD: [15, Alg. 3]); \varepsilon : the desired relative error bound
for the given decomposition method; Frames: total number of the frames compressed in the TT-
cores; Used: number of frames used to update the TT-cores; Time: total execution time of the
algorithm; mean RRE: final mean RRE at the end of the experiment; CR: compression ratio. For
each experiment, the best performance is shown in bold for Time, mean RRE, and CR. All failures
are due to insufficient memory.

Game Machine Method ε Frames Used Time Mean RRE CR

Breakout M2
TT-ICE 0.1 9295 9295 212.2 0.078 2748.1
TT-ICE∗ 0.1 9295 2376 58.9 0.084 3525.9
ITTD 5 0.1 9295 9295 801.2 0.083 66.55

Breakout M2
TT-ICE 0.01 9295 9295 572.7 0.0075 9.7
TT-ICE∗ 0.01 9295 4997 198.5 0.0078 10.1
ITTD 5 0.01 436 436 Fails Fails Fails

Beamrider M2
TT-ICE 0.1 42473 42473 2689.1 0.089 130.7
TT-ICE∗ 0.1 42473 4017 193.0 0.087 122.3
ITTD 5 0.1 22606 22606 Fails Fails Fails

Beamrider M2
TT-ICE 0.01 26257 26257 Fails Fails Fails
TT-ICE∗ 0.01 42473 22693 2334.3 0.008 4.3
ITTD 5 0.01 4937 4937 Fails Fails Fails

Enduro M1
TT-ICE 0.1 132880 132880 11158.8 0.096 246.6
TT-ICE∗ 0.1 132880 10043 940.1 0.095 225.6
ITTD 5 0.1 96329 96329 Fails Fails Fails

Enduro M1
TT-ICE 0.01 49819 49819 Fails Fails Fails
TT-ICE∗ 0.01 76396 40482 Fails Fails Fails
ITTD 5 0.01 13289 13289 Fails Fails Fails

Q*bert M3
TT-ICE 0.1 18742 18742 1063.6 0.089 817.7
TT-ICE∗ 0.1 18742 3993 180.7 0.094 968.4
ITTD 5 0.1 18742 18742 1477.5 0.094 18.0

Q*bert M3
TT-ICE 0.01 18742 18742 1740.4 0.006 13.6
TT-ICE∗ 0.01 18742 5272 470.0 0.008 15.8
ITTD 5 0.01 2286 2286 Fails Fails Fails

Seaquest M1
TT-ICE 0.1 36805 36805 1793.8 0.091 1176.8
TT-ICE∗ 0.1 36805 3183 173.1 0.096 1703.7
ITTD 5 0.1 36805 36805 2435.0 0.096 30.4

Seaquest M3
TT-ICE 0.01 36805 36805 3907.0 0.007 3.1
TT-ICE∗ 0.01 36805 21194 2024.6 0.008 3.4
ITTD 5 0.01 6667 6667 Fails Fails Fails

Pong M1
TT-ICE 0.1 96302 96302 1566.0 0.066 99835.9
TT-ICE∗ 0.1 96302 2738 70.0 0.066 99835.9
ITTD 5 0.1 96302 96302 1644.6 0.065 2234.6

Pong M1
TT-ICE 0.01 96302 96302 12895.3 0.009 48.3
TT-ICE∗ 0.01 96302 17219 1283.2 0.009 47.2
ITTD 5 0.01 46015 46015 Fails Fails Fails

more, they provide proof that the decrease in compression time over ITTD is not
hardware dependent.

To provide a qualitative perspective on what each of the \varepsilon des levels corresponds,
we provide reconstructions of the frames compressed both with \varepsilon des = 0.1
(Figure 8) and \varepsilon des = 0.01 (Figure 9). In Figure 8 we include ITTD5 reconstruc-
tions in addition to TT-ICE reconstructions. Figure 8 shows that there are visual
distortions on each reconstructed frame regardless of the algorithm used. These arti-
facts caused at the error tolerance of \varepsilon des = 0.1 can be as unobtrusive as discolored
parts/objects (Breakout, Ms.Pac-Man) but also can be completely disruptive as in-
visible agents (Pong, Q*bert).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A1072 AKSOY, GORSICH, VEERAPANENI, AND GORODETSKY

Fig. 8. Original frames from the ATARI dataset (top) along with their respective reconstruc-
tions from the TT-cores compressed using TT-ICE (middle) and ITTD5 (bottom) with \varepsilon des = 0.1.
There are visible visual artifacts on some of the frames. There is no visible difference between TT-
ICE and ITTD5 reconstructions. Left to right: Breakout, Beam Rider, Enduro, Ms.Pac-Man, Pong,
Q*bert, Seaquest, Space Invaders.

Fig. 9. Original frames from the ATARI dataset (top) along with their respective reconstruc-
tions (bottom) from the TT-cores compressed using TT-ICE with \varepsilon des = 0.01. There are no visible
artifacts on the frames. ITTD5 reconstructions are not included here since ITTD5 fails at all games
for \varepsilon des = 0.01. Left to right: Breakout, Beam Rider, Enduro, Ms.Pac-Man, Pong, Q*bert, Seaquest,
Space Invaders.

As the error tolerance is reduced to \varepsilon des = 0.01, the visual artifacts in the re-
construction disappear. In Figure 9, we see that for \varepsilon des = 0.01 the frames can be
reconstructed with no visible disruptions. This also provides evidence that TT-cores
trained with TT-ICE and TT-ICE\ast can be used as a method of storage. Unfortu-
nately at this error tolerance level, we cannot provide reconstructions of ITTD, as
ITTD5 fails due to insufficient memory for all games.

Appendix B. Comparison with TT-FOA. This section includes the com-
parison study and discussion of TT-ICE\ast and TT-FOA in regimes where we found
TT-FOA can be effectively run. We were not able to deploy TT-FOA on our prob-
lems of interest because it required significantly greater storage and computational
requirements than TT-ICE or ITTD due to large-scale auxiliary matrices. For exam-
ple, the TT-ranks used to approximate the tensors in [17] are very low in comparison

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM A1073

TT-ICE∗ TT-FOA TT-FOA (IR) TT-FOA (OR)

0 100 200 300 400 50010−17

10−11

10−5

101

Time index

R
el
at
iv
e
E
rr
or

Fig. 10. Comparison of relative errors of TT-ICE\ast and TT-FOA [27] averaged over 20 repeti-
tions. TT-ICE\ast : TT-ICE\ast with \varepsilon des = 10 - 8; TT-FOA: TT-FOA initialized with correct TT-ranks;
TT-FOA (IR): TT-FOA initialized with insufficient TT-ranks; TT-FOA (OR): TT-FOA initialized
with overestimated TT-ranks. Unlike TT-FOA, TT-ICE\ast achieves a low relative error without the
need for a convergence period and discovers the correct underlying TT-ranks. In case of underesti-
mated TT-ranks, TT-FOA fails to achieve low relative error.

to the final TT-ranks that we obtain in our numerical experiments. As a result, we
performed a comparison using a similar testbed to that in the TT-FOA paper. To be
able to provide a fair comparison between TT-ICE\ast and TT-FOA, we implemented the
MATLAB script provided by the authors of [27] in Python3 and benchmarked against
TT-ICE\ast using a synthetic four-dimensional tensor with size 10\times 15\times 20\times 500 with
TT-ranks [1,2,3,5,1], which is same as the study conducted in [27].

We considered three scenarios for TT-FOA: (1) TT-FOA initialized with the true
TT-ranks, (2) TT-FOA initialized with underestimated TT-ranks, and (3) TT-FOA
initialized with overestimated TT-ranks. On the other hand, for TT-ICE\ast we set
\varepsilon des = 10 - 8 since the synthetic tensor is exactly low rank. We then constructed 20
random four-dimensional tensor streams having increments of size 10\times 15\times 20.

Figure 10 shows the relative error of the approximation at each increment step
averaged over 20 repetitions of the experiment. A comparison of the compression
ratio of methods is not provided here since the TT-ranks are assumed known from
the beginning for TT-FOA.

Figure 10 shows that TT-FOA requires a convergence period before reaching a
stable relative error even when it is initialized with correct TT-ranks. In the case
of underestimated TT-ranks, TT-FOA converges to a higher relative error depending
on the difference in the estimated and actual TT-ranks. TT-FOA converges to the
same level of relative error as the correctly estimated case when the TT-ranks are
overestimated. This behavior is expected for this set of experiments since we have
an exactly low-rank tensor stream. On the other hand, TT-ICE\ast neither requires
estimation of the TT-ranks beforehand nor needs a convergence period to achieve the
desired level of relative error.

The difference between both methods becomes evident when the time to com-
press the streams is considered. TT-FOA performs Kronecker products and matrix
inversions, and the size of the matrices involved in those operations plays a decisive

3The accuracy of the Python implementation was verified by comparing the results of our Python
implementation and the published MATLAB script using the same four-dimensional tensor streams.
To time TT-FOA fairly in the following experiments, we removed the relative error computation
that was included in the MATLAB implementation of the algorithm and computed the relative error
separately.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A1074 AKSOY, GORSICH, VEERAPANENI, AND GORODETSKY

role in the speed of the algorithm. Therefore, there is a notable difference in com-
putation time between different TT-rank estimations. When the correct TT-ranks
are estimated ([1,2,3,5,1]), compression of the streams takes on average 1.8070s. This
time becomes 1.5543s when TT-ranks are underestimated as [1,1,2,3,1] and increases
to 4.1290s when TT-ranks are overestimated as [1,3,5,10,1]. TT-ICE\ast compresses the
entire stream in 0.5806s on average.

When the same experiment is repeated with a tensor of the same size but with
TT-ranks [1,4,10,30,1], TT-FOA requires 314.53s on average with correct TT-ranks.
This time can get as low as 14.965s when TT-FOA is initialized with underestimated
TT-ranks [1,3,5,20,1] and can get as high as 628.70s with overestimated TT-ranks
[1,6,15,40,1]. On the other hand, TT-ICE\ast scales very well in this scenario and com-
presses the entire stream in 0.6656s on average.

Reproducibility of computational results. This paper has been awarded
the ``SIAM Reproducibility Badge: code and data available"" as a recognition that
the authors have followed reproducibility principles valued by SISC and the scientific
computing community. Code and data that allow readers to reproduce the results
in this paper are available in https://github.com/dorukaks/TT-ICE as well as in the
accompanying supplementary material.

Acknowledgments. We thank Brian Chen for preparing the ATARI game
dataset. The code for TT-ICE and TT-ICE\ast is publicly available on github.com/
dorukaks/TT-ICE.

REFERENCES

[1] D. Aksoy, S. Alben, R. D. Deegan, and A. A. Gorodetsky, Inverse design of self-
oscillatory gels through deep learning, Neural Comput. Appl., 34 (2022), pp. 6879--6905,
https://doi.org/10.1007/s00521-021-06788-9.

[2] S. Alben, A. A. Gorodetsky, D. Kim, and R. D. Deegan, Semi-implicit methods for the
dynamics of elastic sheets, J. Comput. Phys., 399 (2019), 108952, https://doi.org/10.1016/
j.jcp.2019.108952.

[3] A. Anaissi, B. Suleiman, and S. M. Zandavi, NeCPD: An Online Tensor Decomposition with
Optimal Stochastic Gradient Descent , http://arxiv.org/abs/2003.08844, 2020.

[4] C. G. Baker, K. A. Gallivan, and P. Van Dooren, Low-rank incremental methods for
computing dominant singular subspaces, Linear Algebra Appl., 436 (2012), pp. 2866--2888,
https://doi.org/10.1016/j.laa.2011.07.018.

[5] B. Chen, S. Tandon, D. Gorsich, A. Gorodetsky, and S. Veerapaneni, Behavioral cloning
in Atari games using a combined variational autoencoder and predictor model , in Proceed-
ings of the Congress on Evolutionary Computation, IEEE, 2021, pp. 2077--2084.

[6] A. A. Cook, G. M{\i}s{\i}rl{\i}, and Z. Fan, Anomaly detection for iot time-series data: A survey,
IEEE Internet Things, 7 (2019), pp. 6481--6494.

[7] S. De, E. Corona, P. Jayakumar, and S. Veerapaneni, Tensor-Train Compression of Dis-
crete Element Method Simulation Data, preprint, arXiv:2210.08399, 2022.

[8] Y. Du, Y. Zheng, K. C. Lee, and S. Zhe, Probabilistic streaming tensor decomposition, in
Proceedings of the International Conference on Data Mining, IEEE, 2018, pp. 99--108,
https://doi.org/10.1109/ICDM.2018.00025.

[9] C. Eckart and G. Young, The approximation of one matrix by another of lower rank , Psy-
chometrika, 1 (1936), pp. 211--218, https://doi.org/10.1007/BF02288367.

[10] M. H. Engeli, Bits and Spaces: Architecture and Computing for Physical, Virtual, Hy-
brid Realms: 33 Projects by Architecture and CAAD, ETH Zurich, Vol. 1, ETH Zurich,
Birkh\"auser, 2001.

[11] P. Giudici, B. Huang, and A. Spelta, Trade networks and economic fluctuations in Asian
countries, Econ. Syst., 43 (2019), 100695, https://doi.org/10.1016/j.ecosys.2019.100695.

[12] J. H\r astad, Tensor rank is NP-complete, in Automata, Languages and Programming, Lec-
ture Notes in Comput. Sci. 372, Springer, New York, 1989, pp. 451--460, https://doi.org/
10.1007/BFb0035776.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://github.com/dorukaks/TT-ICE
https://github.com/dorukaks/TT-ICE
https://github.com/dorukaks/TT-ICE
https://doi.org/10.1007/s00521-021-06788-9
https://doi.org/10.1016/j.jcp.2019.108952
https://doi.org/10.1016/j.jcp.2019.108952
http://arxiv.org/abs/2003.08844
https://doi.org/10.1016/j.laa.2011.07.018
https://arxiv.org/abs/2210.08399
https://doi.org/10.1109/ICDM.2018.00025
https://doi.org/10.1007/BF02288367
https://doi.org/10.1016/j.ecosys.2019.100695
https://doi.org/10.1007/BFb0035776
https://doi.org/10.1007/BFb0035776

INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM A1075

[13] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal,
C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
and Y. Wu, Stable Baselines, 2018, https://github.com/hill-a/stable-baselines.

[14] C. Jia, Y. Kong, Z. Ding, and Y. Fu, Latent tensor transfer learning for RGB-D action
recognition, in Proceedings of the 2014 ACM Conference on Multimedia, ACM, New York,
2014, pp. 87--96, https://doi.org/10.1145/2647868.2654928.

[15] H. Liu, L. T. Yang, Y. Guo, X. Xie, and J. Ma, An incremental tensor-train decompo-
sition for cyber-physical-social big data, IEEE Trans. Big Data, 7 (2018), pp. 341--354,
https://doi.org/10.1109/tbdata.2018.2867485.

[16] M. W. Mahoney, Randomized algorithms for matrices and data, Found. Trends Mach. Learn.,
3 (2010), pp. 123--224, https://doi.org/10.1561/2200000035.

[17] E. Mart\'{\i}nez-Montes, P. A. Vald\'es-Sosa, F. Miwakeichi, R. I. Goldman, and M. S.
Cohen, Concurrent EEG/fMRI analysis by multiway partial least squares, NeuroImage,
22 (2004), pp. 1023--1034, https://doi.org/10.1016/j.neuroimage.2004.03.038.

[18] L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math., 11
(1960), pp. 50--59, https://doi.org/10.1093/qmath/11.1.50.

[19] F. Miwakeichi, E. Mart\'{\i}nez-Montes, P. A. Vald\'es-Sosa, N. Nishiyama, H. Mizuhara,
and Y. Yamaguchi, Decomposing EEG data into space-time-frequency components using
parallel factor analysis, NeuroImage, 22 (2004), pp. 1035--1045, https://doi.org/10.1016/
j.neuroimage.2004.03.039.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D.
Hassabis, Human-level control through deep reinforcement learning, Nature, 518 (2015),
pp. 529--533, https://doi.org/10.1038/nature14236.

[21] M. Nakatsuji, Q. Zhang, X. Lu, B. Makni, and J. A. Hendler, Semantic social network
analysis by cross-domain tensor factorization, IEEE Trans. Comput. Social Syst., 4 (2017),
pp. 207--217, https://doi.org/10.1109/TCSS.2017.2732685.

[22] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295--2317,
https://doi.org/10.1137/090752286.

[23] A. Raffin, Rl Baselines Zoo, 2018, https://github.com/araffin/rl-baselines-zoo.
[24] S. Sizov, S. Staab, and T. Franz, Analysis of social networks by tensor decomposition, in

Handbook of Social Network Technologies and Applications, B. Furht, ed., Springer US,
Boston, 2010, pp. 45--58, https://doi.org/10.1007/978-1-4419-7142-5 3.

[25] S. Smith, K. Huang, N. D. Sidiropoulos, and G. Karypis, Streaming tensor factorization
for infinite data sources, in Proceedings of the 2018 SIAM International Conference on
Data Mining, SIAM, Philadelphia, 2018, pp. 81--89, https://epubs.siam.org/doi/10.1137/
1.9781611975321.10.

[26] A. Sobral, C. G. Baker, T. Bouwmans, and E. H. Zahzah, Incremental and multi-feature
tensor subspace learning applied for background modeling and subtraction, in Image Analy-
sis and Recognition, Lecture Notes in Comput. Sci. 8814, Springer, New York, 2014,
pp. 94--103, https://doi.org/10.1007/978-3-319-11758-4 11.

[27] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and R. Boyer, Adaptive algorithms for
tracking tensor-train decomposition of streaming tensors, in Proceedings of the European
Signal Processing Conference, 2021, pp. 995--999, https://doi.org/10.23919/Eusipco47968.
2020.9287780.

[28] M. Vandecappelle, N. Vervliet, and L. De Lathauwer, Nonlinear least squares updating
of the canonical polyadic decomposition, in Proceedings of the 25th European Signal Pro-
cessing Conference, 2017, pp. 663--667, https://doi.org/10.23919/EUSIPCO.2017.8081290.

[29] X. Wang, L. T. Yang, Y. Wang, L. Ren, and M. J. Deen, ADTT: A highly efficient dis-
tributed tensor-train decomposition method for IIoT big data, IEEE Trans. Ind. Inform.,
17 (2021), pp. 1573--1582, https://doi.org/10.1109/TII.2020.2967768.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 3

5.
3.

25
.1

36
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://github.com/hill-a/stable-baselines
https://doi.org/10.1145/2647868.2654928
https://doi.org/10.1109/tbdata.2018.2867485
https://doi.org/10.1561/2200000035
https://doi.org/10.1016/j.neuroimage.2004.03.038
https://doi.org/10.1093/qmath/11.1.50
https://doi.org/10.1016/j.neuroimage.2004.03.039
https://doi.org/10.1016/j.neuroimage.2004.03.039
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/TCSS.2017.2732685
https://doi.org/10.1137/090752286
https://github.com/araffin/rl-baselines-zoo
https://doi.org/10.1007/978-1-4419-7142-5_3
https://epubs.siam.org/doi/10.1137/1.9781611975321.10
https://epubs.siam.org/doi/10.1137/1.9781611975321.10
https://doi.org/10.1007/978-3-319-11758-4_11
https://doi.org/10.23919/Eusipco47968.2020.9287780
https://doi.org/10.23919/Eusipco47968.2020.9287780
https://doi.org/10.23919/EUSIPCO.2017.8081290
https://doi.org/10.1109/TII.2020.2967768

	Introduction
	Background
	Tensor train decomposition
	Existing incremental tensor decompositions
	Limitations of existing approaches

	Methodology: The TT-ICE algorithm
	Overview
	Analysis
	Heuristics to improve performance

	Experiments
	Evaluation criteria
	Datasets and experiments
	ATARI gameplay sequences
	Self-oscillating gel simulations

	Conclusion
	Acknowledgments
	References
	Appendix A. Other ATARI games
	Appendix B. Comparison with TT-FOA

