
Incremental Hierarchical Tucker Decomposition

Doruk Aksoy doruk@umich.edu
Department of Aerospace Engineering
University of Michigan
Ann Arbor, MI, USA

Alex A. Gorodetsky goroda@umich.edu

Department of Aerospace Engineering

University of Michigan

Ann Arbor, MI, USA

Abstract

We present two new algorithms for approximating and updating the hierarchical Tucker
decomposition of tensor streams. The first algorithm, Batch Hierarchical Tucker - leaf to
root (BHT-l2r), proposes an alternative and more efficient way of approximating a batch of
similar tensors in hierarchical Tucker format. The second algorithm, Hierarchical Tucker -
Rapid Incremental Subspace Expansion (HT-RISE), updates the batch hierarchical Tucker
representation of an accumulated tensor as new batches of tensors become available. The
HT-RISE algorithm is suitable for the online setting and never requires full storage or recon-
struction of all data while providing a solution to the incremental Tucker decomposition
problem. We provide theoretical guarantees for both algorithms and demonstrate their
effectiveness on physical and cyber-physical data. The proposed BHT-l2r algorithm and
the batch hierarchical Tucker format offers up to 6.2× compression and 3.7× reduction in
time over the hierarchical Tucker format. The proposed HT-RISE algorithm also offers up
to 3.1× compression and 3.2× reduction in time over a state of the art incremental tensor
train decomposition algorithm.

Keywords: Tensor decompositions, incremental algorithms, streaming data, scientific
machine learning, data compression, latent representation, low-rank factorization

1 Introduction

Low-rank tensor decomposition formats (Oseledets, 2011; Tucker, 1966; Grasedyck, 2010;
De Lathauwer et al., 2000b) provide an efficient way of representing multidimensional data
arising from a large number of applications that include videos (Tian et al., 2023; Chen
et al., 2024; Panagakis et al., 2021), MRI scan images (Zhang et al., 2019; Lehmann et al.,
2022; Mai and Zhang, 2023), deep learning (Kossaifi et al., 2023; Luo et al., 2024; Yang
et al., 2024), and solutions of scientific simulations (Marks and Gorodetsky, 2024; Pfaff
et al., 2020). There does not exist a single, univerally optimal, low-rank tensor format.
Instead, some well-known low-rank tensor formats are the CP format (Harshman et al.,
1970; Carroll and Chang, 1970), the Tucker format (Tucker, 1966), the Tensor Train (TT)
format (Oseledets, 2011), and the hierarchical Tucker (HT) format (Oseledets and Tyrtysh-
nikov, 2009; Grasedyck, 2010). These formats provide different forms of compression that
exploit slightly different types of low-rank structure in data.

In this paper, we consider the problem decomposing data in batches. This problem is
motivated by the fact that data in many applications is not available at once, and/or the

©0000 Doruk Aksoy and Alex A. Gorodetsky. DISTRIBUTION A. Approved for public release; distribution
unlimited. OPSEC#9305.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/

Aksoy and Gorodetsky

Project Ck
ℓ onto updated cores

Intermediate

core Ck
ℓ

Append

Compute error-truncated SVD

for each core on layer ℓ

to Gk−1
ℓ,i

Pad parent cores with zeros

Updated HT
HX k

Reshape and
set ℓ = ℓ − 1

Streamed
tensor Yk

Residuals
Rℓ,i

Compute residuals

Set ℓ = p

Left singular
vectors URℓ,i

Updated cores
Gk

ℓ,i

Projected core

C̄k
ℓ

If ℓ = 1

Figure 1: Flow of the proposed HT-RISE algorithm. The algorithm updates the hierarchical Tucker
representation of an accumulated tensor in batch hierarchical Tucker form as new batches of tensors
become available. Green represents the input data and red represents the output data.

size of the data makes it infeasible or impossible to compute an approximation using a one-
shot tensor decomposition algorithm due to computational issues (e.g., memory limits). For
these scenarios, incremental algorithms can be effective by incrementally compress new data
as it becomes available. They are particularly useful in the online setting where the data
comes from a streaming process. While the literature has numerous incremental algorithms
to compute the CP decomposition (Zeng and Ng, 2021; Smith et al., 2018), the Tucker
decomposition (De et al., 2023; Malik and Becker, 2018), and the TT decomposition (Aksoy
et al., 2024a; Liu et al., 2018; Kressner et al., 2023), we are not aware of incremental
approaches for the HT format.

The main contribution of this paper is providing the first algorithm to incrementally
construct a HT decomposition from streaming data.

Furthermore, many applications that leverage compressed representations use it as a
latent space for performing downstream tasks. In this setting, it is important to have both
an encoding and decoding procedure between the full data and the latent space. While
the HT format has some advantages over other formats, it does not immediately provide
an efficient latent vector that represents an encoding of a batch of data. Straight-forward
applications of existing HT decomposition algorithms (Kressner and Tobler, 2014) treat the
batch dimension same as an additional dimension identical to existing ones — so that when
a batch of d-dimensional tensors Y ∈ Rn1×···×nd×N is compressed, the batch dimension is
represented as an HT leaf node with orthonormal columns.

We improve upon this approach by modifying the HT format to more efficiently represent
the batch latent space by the HT root node.

Formally, we describe the problem as follows. We consider a d-way tensor to be a
multidimensional array Y ∈ Rn1×···×nd with d dimensions. Parallel to the definition in Aksoy
et al. (2024a), a tensor stream (or alternatively, stream of tensors), is a sequence of d+ 1-

way tensors Y1,Y2,. . . , where each element in the sequence Yk ∈ Rn1×···×nd×Nk
is a Nk

batch of d-dimensional tensors. A finite stream of tensors is called an accumulation and
can be viewed as a (d+ 1)-way tensor X k ∈ Rn1×···×nd×nk

by concatenating the tensors in
the stream along the last dimension, with nk =

∑k
i=1N

i.

Taken together, the above setting motivates the following problem as the first one that
we solve.

2

Incremental Hierarchical Tucker

Problem 1 (Approximating a batch of similar tensors in hierarchical Tucker format) Con-
struct a scheme to compute an approximation Ŷ for a batch of d-dimensional tensors
Y ∈ Rn1×···×nd×N in a (batch-modified) hierarchical Tucker format. Furthermore, the com-
puted representation should approximate the original batch of tensors with error ∥Y−Ŷ∥F ≤
εdes∥Y∥F .

The scheme should also create individual latent representations for all tensors in a batch,
and provide a means to decode a latent representation into the full tensor.

Next, we seek to perform the same task, but incrementally:

Problem 2 (Updating an existing hierarchical Tucker representation as new batches of
tensors become available) Construct a scheme to update the approximation X̂ k of the accu-
mulation tensor X k after every increment k in hierarchical Tucker format. The constructed
scheme should maintain the guaranteed bounds on the error ∥X k − X̂ k∥F for all k. Fur-
thermore, this approximate accumulation should represent all previous tensor increments
Yℓ with error ∥Yℓ − Ŷℓ∥F ≤ εdes∥Yℓ∥F for any ℓ ≤ k, where Ŷℓ can be extracted from X̂ k.

Our contributions are algorithms to solve these two problems:

1. The Batch Hierarchical Tucker - leaf to root, Algorithm 1, computes an approximate
hierarchical Tucker representation of a batch of tensors Y.

2. The Hierarchical Tucker - Rapid Incremental Subspace Expansion, Algorithm 2, up-
dates an existing batch HT with new data.

Moreover, HT-RISE is suitable for the online setting and never requires full storage or recon-
struction of all data while providing a solution to Problem 2. These algorithms are both rank
adaptive and have provable error bounds. A high level overview of the HT-RISE algorithm
is shown in Figure 1.

These contributions are achieved by limiting the number of new basis vectors, repre-
senting directions orthogonal to the span of the existing ones, appended to the hierarchical
Tucker cores of an existing accumulation tensor after each data increment. Moreover, our
theoretical results are empirically justified on both scientific applications dealing with com-
pression of numerical solutions of partial differential equations (PDEs) and on applications
arising from image-based data such as video streams and multispectral satellite images.

Our experiments show up to 1.5× compression and 1.7× reduction in time by the new
Batch-HT format compared to the HT format on scientific data and up to 6.2× compression
and 3.7× reduction in time for an image dataset. Furthermore, the proposed HT-RISE al-
gorithm provides up to 3.1× compression and 4.5× reduction in time at physical data, and
2× compression and 5.3× reduction in time at image-based data over a state of the art
incremental TT decomposition algorithm. In addition to its computational efficiency, the
proposed HT-RISE algorithm discovers a latent representation that is more expressive and
generalizable than the methods compared. This is evidenced by achieving the target ap-
proximation error on the test set with up to 15× less data than methods compared. Even
for cases where the state-of-the-art TT decomposition algorithm fails to achieve the target
error on the test set, HT-RISE still achieves the target error.

The rest of this paper is structured as follows. In section 2, we present the foundational
concepts behind both the Tucker format and the HT format. In section 3, we present the

3

Aksoy and Gorodetsky

BHT-l2r and HT-RISE algorithms and prove their correctness. In section 4, we provide
numerical experiments using our proposed approaches on physical and cyber-physical data.
Finally, in section 5, we conclude the paper and discuss possible future extensions.

2 Background

This section presents the relevant background on tensors, Tucker format, and hierarchical
Tucker format.

2.1 Tensors

The mode-i matricization (or unfolding) of a d-way tensor A ∈ Rn1×···×nd reshapes the
tensor into a matrix A(i) with size ni × n1 . . . ni−1ni+1 . . . nd. In this unfolding, the i-th di-
mension is swapped to first index and fibers corresponding to the i-th mode are mapped into
the rows of the matrix. The mode-i unfolding operation will be represented as unfold(A, i)
in the rest of the text.

The contraction between two tensors A ∈ Rn1×···×nd and B ∈ Rnd×nd+1×···×nD along the
d-th dimension of A and the first dimension of B is a binary operation represented as

C = A d×1 B, where C (i1, i2, . . . , id−1, id+1, . . . , id) =
∑nd

j=1A (i1, . . . , id−1, j)B (j, id+1, . . . , iD),

and the output C ∈ Rn1×···×nd−1×nd+1×···×nD becomes a (D− 2)-way tensor. The subscripts
on either side of the × sign indicate the contraction axes of the tensors on their respective
sides.

Let A ∈ Rn1×···×nd be a d-dimensional tensor, and Bi ∈ Rmi×ni be matrices with
i = 1, . . . , d. Then multi-index contraction between A and Bi is defined as1

C = A× JB1, . . . , BdK, where C = (· · · (((A 1×2 B1) 2×2 B2) 3×2 · · ·) d×2 Bd) , (1)

with C ∈ Rm1×···×md the resulting d-dimensional tensor. The idea in (1) can be generalized
to a contraction with d (or fewer) tensors Bi along their last dimensions in a similar manner.
In case of contraction with d three-way tensors Bi ∈ Rm1i

×m2i
×ni , (1) is denoted as

C = A× JB1, . . . ,BdK, where C = (· · · (((A 1×3 B1) 2×3 B2) 3×3 · · ·) d×3 Bd) , (2)

with C ∈ Rm11×m12×m21×m22×···×md1
×md2 being the resulting 2d dimensional tensor. Finally,

it may be useful to only contract along a subset of dimensions. To this end, we can define
a slightly modified version of (2) as

C = A×
I

JBi1 , . . . ,BimK, where C = (· · · (((A i1×3 Bi1) i2×3 Bi2) i3×3 · · ·) im×3 Bim)
(3)

to represent a contraction along m directions that are specified by the index set I =
{i1, . . . , im}, with ij ∈ 1, . . . , d denoting the dimension of C that is involved with the con-
traction.

1. Even though we have provided examples strictly contracting the second dimension of the matrices with
the tensor, the multi-index contraction can happen between any appropriate axis of the matrix and the
tensor in question.

4

Incremental Hierarchical Tucker

Concatenation of two tensors along the k-th dimension is a binary operation. Concate-
nating two d-dimensional tensors A ∈ Rn1×···×nk×···×nd and B ∈ Rn1×···×nk−1×mk×nk+1×···×nd

along their k-th dimension is denoted by

C = A
k
⊕B, where C (i1, . . . , ik, . . . , id) =

{
A (i1, . . . , ik, . . . , ik) if ik ≤ nk

B (i1, . . . , (ik − nk), . . . , ik) otherwise
. (4)

Concatenation of a tensor with 0m×n×p, a tensor of zeros with size m × n × p will be
referred to as padding.

2.2 Tucker format

When tensors have additional structure, it may be possible to effectively represent them
in a more compact format. In this section we describe the Tucker format, which will form
the basis of the hierarchical Tucker format we consider later. L.R. Tucker proposed a way
to decompose a third order tensor into three factor matrices and a core tensor, coining the
name Tucker format for this family of tensor representation format (Tucker, 1963; Tucker
et al., 1964; Tucker, 1966). In Tucker format, a d dimensional tensor Y ∈ Rn1×···×nd is
represented as a contraction between a d-dimensional core tensor C ∈ Rr1×···×rd and d
factor matrices Ui ∈ Rni×ri ,

Y = C × JU1, . . . , UdK. (5)

The Tucker representation reduces the storage from O
(
nd

)
to O

(
dnr + rd

)
, where ri are

potentially much smaller than ni. One of the well established ways to compute Tucker
representation of a tensor is through the HOSVD (Higher Order Singular Value Decomposition)
algorithm (De Lathauwer et al., 2000b; Tucker, 1966). In literature, there are numerous
efficient methods of computing the Tucker representation of a tensor including direct (Van-
nieuwenhoven et al., 2012; Kressner and Perisa, 2017), randomized (Che and Wei, 2019;
Kressner and Perisa, 2017; Tsourakakis, 2010; Zhang et al., 2018; Zhou et al., 2014; Minster
et al., 2022; Sun et al., 2020), and iterative (De Lathauwer et al., 2000a; Kroonenberg and
De Leeuw, 1980; Wen and So, 2015; Chachlakis et al., 2020; Kressner and Perisa, 2017;
Tsourakakis, 2010; Eldén and Savas, 2009) algorithms.

2.3 Hierarchical Tucker Format

The Tucker format scales exponentially with the number of dimensions d, which prohibits
its usage for high-dimensional tensors. One way to alleviate this curse of dimensionality
is to exploit structure of the Tucker core. Such structure can be exploited via a recursive
Tucker decomposition. In Oseledets and Tyrtyshnikov (2009), the resulting format is named
as tree Tucker, and in Grasedyck (2010) it is mentioned as hierarchical Tucker (HT). The
HT format introduces a hierarchy among dimensions and splits them accordingly. In the
simplest, and most commonly used, binary splitting case, the Tucker core C in Equation (5)
is reshaped into a tensor with d/2 dimensions and a decomposition of this core is created,
recursively. The HT format has storage complexity O(dnR+ dR3), cubic in the maximum
HT rank R.

The HT representation of a tensor is a couple H = (T,G), where T is a dimension
tree and G is a set of HT cores. The dimension tree is a connected graph of 2d− 1 nodes,

5

Aksoy and Gorodetsky

T = {Nℓ,iℓ}, that specifies a contraction ordering of the 2d − 1 HT cores, G = {Gℓ,iℓ}.
The tree has depth p and |Tℓ| nodes in layer ℓ. A layer is a set of nodes equidistant
from the root. The indices of each node in the tree Nℓ,iℓ ∈ T run from ℓ = 0, . . . , p and
iℓ = 1, . . . , |Tℓ|, and each node describes how the corresponding core Gℓ,iℓ contracts with its
neighbors. Contracting all cores according to the dimension tree yields a reconstruction of
the represented tensor. The root, interior, and leaves of the tree structure correspond to so-
called root, transfer, and leaf cores. Figure 2 illustrates various configurations of dimension
trees for a five-dimensional tensor.

{n1, n2, n3, n4, n5}

{n1, n2, n3}

{n1, n2}

{n1}{n2}

{n3}

{n4, n5}

{n4} {n5}

{n1, n2, n3, n4, n5}

{n1, n2}

{n1} {n2}

{n3, n4, n5}

{n3, n4}

{n3}{n4}

{n5}

{n1, n2, n3, n4, n5}

{n2, n4, n5}

{n2, n4}

{n2}{n4}

{n3}

{n1, n3}

{n1} {n3}

Figure 2: Three possible configurations of the dimensions for a five dimensional tensor with shape
n1 × n2 × n3 × n4 × n5. Each dimension tree describes a different interaction between dimensions
and therefore yields different compression performance. For a more detailed study on the effect of
the axis reordering, please refer to Appendix D.3. Root, transfer, and leaf nodes are colored in red,
blue, and green, respectively.

For balanced binary trees, the depth is determined by p = ⌈log2 (d)⌉, with ⌈·⌉ defined
as min {i ∈ Z|i ≥ ·}. In this study, we focus exclusively on balanced dimension trees, which
means that the leaf nodes appear on both the last level (p) and the penultimate level
(p − 1). The order in which dimensions are arranged significantly impacts the interaction
among them, and consequently influences the result of the decomposition, as empirically
demonstrated in Appendix D.3. Figure 2 also shows that there are always a total of d leaf
cores, however these leaf cores are not always in the same layer. It will be useful to keep track
of the dimension to which a leaf core refers. To this end, we will denote dℓ,iℓ ∈ {1, . . . , d}
to be the dimension corresponding to leaf core Gℓ,iℓ . The subscript is only valid if the core
is a leaf node.

Formally, a node is a couple Nℓ,iℓ = (Sℓ,iℓ ,Pℓ,iℓ) that specifies the indices of the succes-
sors and parents with which Gℓ,iℓ contracts. For each type of core we have:

Leaf core : Gℓ,iℓ ∈ Rni×rℓ,iℓ ; Sℓ,iℓ = ∅, Pℓ,iℓ = (ℓ− 1, ⌈iℓ/2⌉)

Transfer core : Gℓ,iℓ ∈ Rrℓ+1,αℓ+1
×rℓ+1,αℓ+1+1×rℓ,iℓ , Sℓ,iℓ = {(ℓ + 1, αℓ+1), (ℓ + 1, (αℓ+1 +

1))}, Pℓ,iℓ = (ℓ− 1, ⌈iℓ/2⌉)

Root core : G0,1 ∈ Rr1,1×r1,2 , S0,1 = {(1, 1), (1, 2)} P0,1 = ∅,

where αℓ+1 = 2(iℓ−βℓ,iℓ)−1 indexes the appropriate successor node, and βℓ,iℓ is the number
of leaf nodes in layer ℓ up to iℓ node of that layer. For a node Nℓ−1,t, the order of successors
Sℓ−1,t = {Nℓ,i,Nℓ,j} is determined by comparing their position within the ℓ-th layer, i.e.,
by ranking i and j.

6

Incremental Hierarchical Tucker

The collection of ranks, called the HT ranks, R = [r1,1, r1,2, r2,1, . . . , rp,|Tp|] correspond
to the sizes of the edges along which the leaves, transfer, and root core nodes contract.
Contraction with a parent occurs along the last dimension of a node, while contraction with
successors occurs with the first two.

To obtain the full tensor we can therefore perform contractions of each core with parents
and successors according to the map provided by T. A particularly illuminating contrac-
tion ordering is root-to-leaves. Root-to-leaves contraction begins contraction with the root
node and moves down the tree, layer by layer. Overall, this contraction represents the
reconstruction of a tensor Y from its HT format as

Y = (· · · ((G0,1 × JG1,1,G1,1K)× JG2,1,G2,2,G2,3,G2,4K)× · · ·)× JGp,1, . . . ,Gp,|Tp|K. (6)

This representation shows why the HT format is interpreted as a hierarchical decomposition
of the Tucker core tensor. Indeed the last contraction is over the leaves, which can be
interpreted as the Tucker leaves.

2.3.1 Leaves-to-root error truncated hierarchical Tucker decomposition

In this section we describe an algorithm to represent a given tensor Y ∈ Rn1×···×nd in
low-rank format. In practice, Y is rarely exactly low rank, and hence decomposition algo-
rithms generate a representation with a prescribed accuracy. Two strategies to compute
a hierarchical Tucker representation include: 1) leaves-to-root decomposition (Grasedyck,
2010, Alg. 2), and 2) root-to-leaves decomposition (Kressner and Tobler, 2014, Alg. 5). Our
proposed incremental method updates the hierarchical Tucker representation from leaves to
root, and we limit discussion to this case.

Leaves-to-root decomposition essentially applies the HOSVD (or a variant) to each layer
of the tree T, beginning at the p-th layer. First, a truncated singular value decomposition
is performed for |Tp| unfoldings — each unfolding corresponding to the dimensions of the
i-th node in the layer. For each, an error truncated SVD with a Frobenius norm bound εnw
on the residual Ep,i is computed,

Y(dp,i) = Up,iΣp,iV
T
p,i + Ep,i ∥Ep,i∥F ≤ εnw, i = 1, . . . , |Tp| (7)

where Up,i ∈ Rni×rp,i is the matrix of left singular vectors with the truncation rank rp,i,
Σp,i ∈ Rrp,i×rp,i is the matrix of singular values, and V T

p,i ∈ Rrp,i×m is the matrix of right
singular vectors. All nodes at the p-th layer correspond to leaf cores, yielding Gp,i = Up,i.
The terms Σp,i and Vp,i are discarded in the leaves-to-root decomposition2. Once (7) is
repeated for all leaves on layer p, the orthogonal Up,i matrices are contracted with Y along
the dimensions refered to by the leaves

C̄p = Y ×
I

JUT
p,1, . . . , U

T
p,|Tp|K, where I = {dp,i; i = 1, . . . , |Tp|} (8)

to obtain an intermediate core C̄p that will be decomposed recursively in subsequent steps.
Prior to such a decomposition, this intermediate core must be reshaped. In a perfect binary
tree, there are d leaves (one for each dimension), and reshaping transforms C̄p into a tensor

2. If a variant of the ST-HOSVD algorithm (Vannieuwenhoven et al., 2012) is used to perform the computa-
tions, then Σ and V might be used in the subsequent steps within the layer.

7

Aksoy and Gorodetsky

Cp−1 of dimensions rp,1rp,2 × rp,3rp,4 × · · · × rp,d−1rp,d. More generally, the dimension tree
defines the groupings by defining the successors of each node. To this end, we can define
the reshaped dimensions using an index set according to

ITp−1 =
⋃|Tp−1|

j=1

ndp−1,j

if Np−1,j is a leaf∏
(p,m)∈Sp−1,j

rp,m else. , so that Cp−1 = reshape
(
C̄p, ITp−1

)
.

(9)

Once we obtain Cp−1, the error truncated SVD analogous to (7) and reshaping steps
are repeatedly used to decompose each level to obtain Cℓ for ℓ = p − 2, . . . , 1. For these
subsequent levels, the left-singular vectors Uℓ,i of the truncated SVD of the unfoldings Cℓ,(i)

become the transfer cores. Transfer cores in the HT format are three dimensional and thus
the left singular vectors are reshaped according to

Gℓ,i = reshape
(
Uℓ,i, INℓ,i

)
, where INℓ,i

=

 ⋃
(ℓ+1,j)∈Sℓ,i

rℓ+1,j

 ∪ rℓ,i. i = 1, . . . , |Tℓ|,

(10)
whereas any leaf cores are reshaped analogously to the approach at the p-th layer.

The decomposition is completed after a final error truncated SVD of C1 ∈ Rr1,1×r1,2

C1 = U1Σ1V
T
1 + E1, (11)

with U1 ∈ Rr1,1×r0 , Σ1 ∈ Rr0×r0 , V T
1 ∈ Rr0×r1,2 and E1 ∈ Rr1,1×r1,2 . Unlike the previous

levels, all singular vectors and values are kept: U1 is reshaped into G1,1, V T
1 is reshaped into

G1,2, and the singular values Σ1 become the root core G0,1. This procedure comes with the
following guarantee

Theorem 1 (Adapted from Kressner and Tobler (2014) Lemma B.2) For a
d-dimensional tensor Y ∈ Rn1×···×nd, the best HT approximation Ỹ with an absolute ap-
proximation error ∥Y − Ỹ∥F ≤ εabs can be obtained by prescribing a node-wise truncation
error εnw = εabs√

2d−3
such that

∥Ei∥F ≤ εnw (12)

for all truncated SVD computations.

In the subsequent section we describe modifications to the HT format and corresponding
approximation algorithms that are needed to adapt to the context of streaming batches of
tensors.

3 Methodology

This section first presents the idea of computing an approximation for a batch of simi-
lar tensors in hierarchical Tucker format, then proposes a method to update an existing
approximation in batch hierarchical Tucker format when new batches of tensors become
available.

8

Incremental Hierarchical Tucker

Y n1

n2

n3
n4

n5

n6
n7

N

(a) 8D tensor

G U1 n1

U2

n2
U3

n3

U4

n4

U5n5

U6

n6
U7

n7

U8

N

r1

r 2r 3r
4

r5

r 6

r
7

r
8

(b) Tucker format

G0,1

G1,1

G2,1

G3,1 G3,2

G2,2

G3,3 G3,4

G1,2

G2,3

G3,5 G3,6

G2,4

G3,7 G3,8

r1,1
r1,2

r 2,
1

r
2,2 r 2,

3
r
2,4

r 3
,1

r
3
,2 r 3

,3

r
3
,4 r 3

,5

r
3
,6 r 3

,7

r
3
,8

n1 n2 n3 n4 n5 n6 n7 N

(c) HT format

G0,1

G1,1

G2,1

G3,1 G3,2

G2,2

G3,3 G3,4

G1,2

G2,3

G3,5 G3,6

G2,4

r1,1
r1,2

r 2,
1

r
2,2 r 2,

3
r
2,4

r 3
,1

r
3
,2 r 3

,3

r
3
,4 r 3

,5

r
3
,6

n1 n2 n3 n4 n5 n6

n7

N

(d) Batch HT format

Figure 3: Tensor network diagrams of an 8D tensor and its representations in Tucker format,
hierarchical Tucker format, and batch hierarchical Tucker format. The streaming/batch dimension
is labeled N

3.1 Batch hierarchical Tucker

In this section, we aim to provide a solution to Problem 1 by presenting a hierarchical Tucker
decomposition algorithm for batches of tensors. One approach to compressing a batch of
tensors in HT format would be to treat the batch dimension as an additional dimension of
the tensor, resulting in the batch dimension represented as another Tucker leaf on the p-th
layer, as shown in Figure 3c. Assuming that the individual tensors in a batch are similar,
i.e., low rank within the batch, such an approach can lead to an inefficient/inaccurate
representation. As an alternative to adding a new leaf, we propose grouping the batch
dimension into the root, as shown in Figure 3d. To do this, we exclude the batch dimension
from the dimension tree during construction as if we are decomposing a single tensor from
the batch.

Specifically, for an N -batch of d-dimensional tensors Y ∈ Rn1×···×nd×N , we use a dimen-
sion tree T corresponding to a tensor with only the first d dimensions of size n1, . . . , nd.
Throughout the decomposition process, the batch dimension is absorbed in the SVD com-
putation and leaf/node contraction. Practically, this is performed by appending the batch
size N to each layer’s index set ITℓ

for ℓ = 0, . . . , p. The batch dimension remains intact
throughout the decomposition process, and no SVD is performed for a reshaping relevant
to this last dimension. As an example, after performing HOSVD on the p-th layer (except the
batch dimension N) and contracting the obtained leaves as shown in Equation (8), we end
up with the intermediate core tensor C̄p ∈ Rr1×···×r|Tp|×n|Tp|+1×···×nd×N . We then reshape
C̄p according to the modified index set ITp−1 and carry on with the decomposition. Since
the batch dimension has been excluded from any HOSVD computation throughout the entire
process, the root core G0,1 ends up being 3 dimensional where the third/new dimension has
size N . The difference between an HT and a batch-HT is shown in Figure 3. Figure 4
depicts this procedure step by step for a tensor with d = 5.3

In this format, only the dimensionality of the root node is increased by one, all other
transfer transfer nodes are still three dimensional and leaf-nodes remain two-dimensional.
The pseudocode of the corresponding algorithm BHT-l2r is presented in Algorithm 1. The-

3. For simplicity of presentation, the above discussion assumed that the batch dimension is ordered as the
last dimension of the tensor. However, as long as the batch dimension is added to the dimension tree
properly (i.e. inserted to the correct order), the position of the batch index does not matter.

9

Aksoy and Gorodetsky

oretical guarantees for the approximation error upper bound for the BHT-l2r algorithm
essentially follows from Theorem 1 and is provided in Appendix A as Theorem 4 for com-
pletion. Appendix D.1 presents a detailed comparison between HT and BHT formats on
both scientific and image data.

Algorithm 1 BHT-l2r: Error truncated leaves-to-root batch hierarchical Tucker decompo-
sition

1: Input
2: Y ∈ Rn1×···×nd×N Input tensor
3: T Dimension tree of the decomposition with depth p
4: εrel Relative error tolerance

5: Output
6: HY Hierarchical Tucker representation with leaves and cores Gℓ,iℓ
7: εnw ← εrel∥Y∥F /

√
2d− 2 ▷ Node-wise error tolerance for SVD

8: C ← Y
9: for i = 1, . . . , |Tp| do ▷ Compute the leaves on layer p

10: C ← unfold (C, dp,i) ▷ dp,i ∈ {1, . . . , d} is the dimension corresponding to the leaf
node Np,i

11: Gp,i ← SVD (C, εnw) ▷ Only the left singular vectors are kept with Rp,i = rp,i
12: INp,i ← {ni, rp,i} ▷ Create index set for the leaf nodes
13: end for
14: C ← C ×

I
JGp,1, . . . ,Gp,|Tp|K ▷ I = {dp,i; i = 1, . . . , |Tp|} as in (8)

15: for ℓ = p− 1 to 1 do
16: C ← reshape (C, ITℓ

) ▷ ITℓ
∪ {N} with ITℓ

constructed using (9)
17: Gℓ,1, . . . ,Gℓ,|Tℓ| ← HOSVD(C, εnw) ▷ INℓ,j

are created using (10) for j = 1, . . . , |Tℓ|
18: for j = 1, . . . , |Tℓ| do
19: Gℓ,j ← reshape

(
Gℓ,j , INℓ,j

)
▷ Folds Gℓ,j into 3D if Nℓ,iℓ is a transfer node

20: end for
21: C ← C × JGℓ,1, . . . ,Gℓ,|Tℓ|K
22: end for
23: G0,1 ← reshape

(
C, IN0,1

)
▷ IN0,1 = {r1,1, r1,2, N}

3.2 Incremental Updates

In this section we propose a solution to Problem 2 via a method to update an existing HT
representation incrementally when new batches of tensors become available. Assume that
at time k, we have an HT approximation HXk−1 of the accumulation tensor X k−1 in batch-

HT format (T,Gk−1). Then, a new batch of Nk d-dimensional tensors Yk ∈ Rn1×···nd×Nk

arrives, and our task is to update Gk−1 to Gk so as to generate a new approximation HXk .
In other words, we describe an approach to update each core Gk−1

ℓ,iℓ
into a new core Gkℓ,iℓ ,

assuming an unchanged dimension tree T. The proposed approach has three components:
1) project onto existing HT cores 2) compute residuals, and 3) update HT cores. The overall
algorithm, HT-RISE, is provided in Algorithm 2 and each step is described in detail next.

10

Incremental Hierarchical Tucker

Algorithm 2 HT-RISE: Incremental updates to a tensor represented as batch hierarchical
Tucker

1: Input
2: Yk ∈ Rn1×···×nd×Nk

streamed Nk-batch of tensors at the k-th step
3: HXk−1 Hierarchical Tucker representation with dimension tree T and cores Gk−1

ℓ,j

4: Ik−1 index set from (k − 1)-th batch
5: εrel desired relative error truncation threshold

6: Output
7: HXk Updated hierarchical Tucker representation with dim. tree T and cores Gkℓ,j
8: Ik Updated index set

9: Project streamed batch and check the representation quality
10: εdes ← εrel∥Yk∥F
11: C ← Yk

12: for ℓ = p to 1 do ▷ Project Yk onto existing cores
13: C ← C ×

I
JGℓ,1, . . . ,Gℓ,|Tℓ|K ▷ I = {dp,i; i = 1, . . . , |Tp|} needed just for the p-th layer

14: C ← reshape
(
C, Ik−1

Tℓ−1

)
▷ Reshape C for the next layer

15: end for
16: if

√
∥Yk∥2F − ∥C∥2F ≤ εdes then

17: Skip updating all cores except the root node
18: Gk ← Gk−1 ∀Gk−1 ∈ HXk−1 \ Gk−1

0,1

19: else
20: Update cores on the last layer
21: C ← Yk

22: εnw ← εdes/
√
2d− 2 ▷ Compute node-wise truncation error tolerance from εdes

23: for j = 1 to |Tp| do
24: C ← unfold (C, dp,j) ▷ dp,j ∈ {1, . . . , d} is the index of the dimension corresponding to Np,j

25: Rp,j ← Πk−1
p,j C ▷ Πk−1

p,j is computed according to (14)

26: Uk
R ← SVD(Rp,j , εnw) ▷ Error-truncated SVD on the residual according to (15)

27: Gkp,j , IkNp,j
← expandCore(Np,j , I

k−1
Np,j

,Gk−1
p,j , Uk

R) ▷ Using Algorithms B.1 and B.2

28: Gk−1
p−1,m ← padWithZeros(Gk−1

p−1,m, t, rRp,j) ▷ Assume Np,j is the t-th successor of Np−1,m

29: end for
30: IkTp−1

← updateIndexSet(Ik−1
Tp−1

,Tp−1) ▷ Update using Algorithm B.1 according to (9)

31: C ← C ×
I

JGkp,1, . . . ,Gkp,|Tp|K ▷ I = {dp,i; i = 1, . . . , |Tp|} as in (8)

32: Update cores on the remaining layers
33: for ℓ = p− 1 to 1 do

34: C ← reshape
(
C, IkTℓ

)
35: for j = 1 to |Tℓ| do
36: C ← unfold (C, ℓ)
37: Rℓ,j ← Πk−1

ℓ,j C ▷ Πk−1
ℓ,j is computed according to (14)

38: Uk
R ← SVD(Rℓ,j , εnw) ▷ Compute error truncated SVD on the residual according to (15)

39: Gkℓ,j , IkNℓ,j
← expandCore(Nℓ,j , I

k−1
Nℓ,j

,Gk−1
ℓ,j , Uk

R) ▷ Using Algorithms B.1 and B.2

40: Gk−1
ℓ−1,m ← padWithZeros(Gk−1

ℓ−1,m, t, rRℓ,j
) ▷ Assume Nℓ,j is the t-th successor of Nℓ−1,m

41: end for
42: IkTℓ−1

← updateIndexSet(Ik−1
Tℓ−1

,Tℓ−1)

43: C ← C × JGkℓ,1, . . . ,Gkℓ,|Tℓ|K
44: end for
45: end if
46: Gk0,1 ← Gk−1

0,1 ⊕3 C

11

Aksoy and Gorodetsky

Y n1

n2n3

n4

n5 N

G

G3,1

n1

G3,2

n2

n3

n4n5
N

r 3
,1

r
3,2

G

G3,1

n1

G3,2

n2

n3

n4n5
N

r 3
,1

r
3,2

r3,1r3,2

G

G3,1

n1

G3,2

n2

G2,4 n5

G2,2

n3

G2,1

r3,1r3,2

G2,3n4

N

r 3
,1

r
3,2

r2,4

r 2
,2

r
2,1

r2,3

G

G2,1

G3,1 G3,2

G2,2 G2,3 G2,4

r 3
,1

r
3
,2

n1 n2

n3 n4 n5

N

r2,3r2,4r2,1r2,2

r 2
,1

r 2
,2

r 2
,3

r 2
,4

G

G2,1

G3,1 G3,2

G2,2 G2,3 G2,4

n1 n2

n3 n4 n5

N

G1,1 G1,2

r 2
,1

r 2
,2

r 2
,3

r 2
,4

r2,1r2,2 r2,3r2,4r1,1 r1,2

r 3
,1

r
3
,2

G0,1

G1,1

G2,1

G3,1 G3,2

G2,2

G1,2

G2,3 G2,4

r 1,
1

r
1,2

r 2
,1

r
2,2 r 2

,3

r
2,4

r 3
,1

r
3
,2

n1 n2

n3 n4 n5

N

Figure 4: Step-by-step decomposition of an N -batch of 5-D tensors with the BHT-l2r algorithm (Al-
gorithm 1). The decomposition starts with the leaves of the last layer. Since the dimension tree
is constructed beforehand, Algorithm 1 has the information about which dimensions’ leaves will be
on which layer through the dimension tree T. Note that the batch dimension (N) remains intact
throughout the entire decomposition process.

Step 1: Projection onto existing HT cores Our proposed approach is centered around
the fact that both Tucker leaves and Tucker cores are matrices with orthonormal columns
(or under reshapings) when trained with Algorithm 1. This structure allows us to compute
an approximation of newly streamed data using an existing set of hierarchical cores through
a simple projection. This approximation will then guide refinement.

The projection is done by contracting the incoming batch with existing cores sequen-
tially in leaves to the root direction (Algorithm 2 lines 12-15) and results in C̃1 ,the latent
representation of Yk using the cores of HXk−1 . Since the projection onto the cores is simply
a series of orthogonal projections, we can compute how well a set of existing HT representa-
tion approximates the input tensor by computing the difference in Frobenius norm between
the input tensor and the projected tensor4. This error is then used to determine if the cores
need to be updated. Then, the error of the projection εproj can be directly computed as

εproj =
√
∥Yk∥2F − ∥C̄k1∥2F . (13)

If εproj is above the desired threshold εabs, the cores are updated to reduce the error below
εabs. These updates will start from the last layer (layer p) and propagate towards the root
of the hierarchical representation (layer 0) sequentially.

Step 2: Computing residuals To identify the missing orthogonal directions in the
existing HT representation, we compute the residualRℓ,j for each core Gk−1

ℓ,j that corresponds
to the missing information related to the newest data batch. The residual is computed by

4. Please refer to Claim 1 for details and proof.

12

Incremental Hierarchical Tucker

projecting the mode-j unfolding of the core Ckℓ onto the orthogonal complement of the
existing core Gk−1

ℓ,j as

Rℓ,j = Πk−1
ℓ,j Ck

ℓ,(j), where Πk−1
ℓ,j = I − Uk−1

ℓ,j

(
Uk−1
ℓ,j

)T
with Uk−1

ℓ,j =

{
Gk−1
ℓ,j if Nℓ,j is a leaf

reshape
(
Gkℓ,j ,

[
α, rk−1

ℓ,j

])
else

,

(14)
where Πk−1

ℓ,j is the projection operator and α = 1
rℓj

∏
γ∈Ik−1

Nℓ
j

γ. Note that the projection

operator Πk−1
ℓ,j slightly differs for the Tucker leaves and the Tucker cores. Since Gℓ,j are

already 2-dimensional for leaf nodes, there is no reshaping required, while the transfer

nodes Gk−1
ℓ,j must first be reshaped into orthonormal matrices Uk−1

ℓ,j ∈ Rα×rk−1
ℓ,j . Once the

residual Rℓ,j is computed, the next step is to find the directions in which Gk−1
ℓ,j must be

expanded.

Step 3: Performing core updates The idea behind incremental updates is similar
to Aksoy et al. (2024a). It seeks to append directions that span the residual to the existing
basis. The core update process starts with an error truncated SVD on the residual Rℓ,j ∈
Rα×β with α same as Step 2 and β = 1

α

∏
θ∈ITℓ

θ as

Rℓ,j = Uk
Rℓ,j

Σk
Rℓ,j

(V k
Rℓ,j

)T + ERℓ,j
, (15)

such that Uk
Rℓ,j
∈ Rα×rRℓ,j , Σk

Rℓ,j
∈ RrRℓ,j

×rRℓ,j , and V k
Rℓ,j
∈ Rβ×rRp,1 . Similar to BHT-l2r

algorithm, we distribute the error uniformly over the cores and determine rRℓ,j
such that

the truncation error ∥ERℓ,j
∥F is at most εabs/

√
2d− 2. Other approaches to distribute the

error over the cores can be considered as well. We include one such alternative method in
Appendix C.

Since we compute Uk
Rℓ,j

from the residual Rℓ,j , we have U
k
Rℓ,j
⊥ Uk−1

ℓ,j by definition. This

allows us to expand the orthogonal bases of Uk−1
ℓ,j by simply concatenating with Uk

Rℓ,j
as

Uk
ℓ,j =

[
Uk−1
ℓ,j Uk

Rℓ,j

]
, (16)

with Uk
ℓ,j ∈ Rα×rkℓ,j , such that rkℓ,j = rk−1

ℓ,j + rRℓ,j
. An update of the index set IkNℓ,j

using

(10) follows (16) to reflect the updated rank rkℓ,j . The new basis Uk
ℓ,j can then be appro-

priately reshaped into transfer or leaf cores in the same manner as for the HT described in
Section 2.3.1. The new core Uk

ℓ,j is then reshaped appropriately to form Gkℓ,j .
After updating Gk−1

ℓ,j to Gkℓ,j , the new dimensions result in a shape mismatch between

Gkℓ,j and its parent Tucker core Gk−1
ℓ−1,t on layer (ℓ−1). If Gk−1

ℓ−1,t ∈ Rrk−1
ℓ,j ×rk−1

ℓ,m ×rk−1
ℓ−1,t , then the

core is padded according to

Gk−1
ℓ−1,t = Gk−1

ℓ−1,t

1
⊕0rRℓ,1

×rk−1
ℓ,m ×rk−1

ℓ−1,t
, or Gk−1

ℓ−1,t = Gk−1
ℓ−1,t

2
⊕0rk−1

ℓ,j ×rRℓ,1
×rk−1

ℓ−1,t
, (17)

depending on the order of Gk−1
ℓ,j in the set of successors of Gk−1

ℓ−1,t. Following (17), the index
sets of Nℓ−1,t is updated using (10) to reflect the padding.

13

Aksoy and Gorodetsky

Steps 2 and 3 are repeated for all nodes on the ℓ-th layer (i.e., for j = 1, . . . , |Tℓ|).
Although we describe the updates to be sequential within a layer, the updates can be
computed in parallel to increase the computational speed. Once all Gk−1

ℓ,j are updated to

Gkℓ,j for j = 1, . . . , |Tℓ|, the index set of (ℓ − 1)-th layer is updated to IkTℓ−1
using (9) to

reflect the rank updates.

Step 1 (revisited): Projection onto updated HT cores Following core updates, the
algorithm projects Ckℓ onto the updated cores on the ℓ-th layer by

C̄kℓ = Ckℓ × JGkℓ,1, . . . ,Gkℓ,|Tℓ|K. (18)

Then, the algorithm reshapes C̄kℓ using the index set Ikℓ−1 to obtain Ckℓ−1. After reshaping,
the algorithm returns to Step 2 and repeats the process for all layers up to to ℓ = 1.

Once we update the cores on the first layer, Gk1,1 and Gk1,2 are used to project Ck1 and

obtain C̄k1 , the representation of Yk using the updated Tucker cores. Finally, we update
Ḡk−1
0 as

Gk0 = Ḡk−1
0

3
⊕ C̄k1 , where C̄k1 = Ck1 × JGk1,1,Gk1,2K, (19)

and therefore conclude updating HXk−1 to HXk . The flow of this presented update scheme
is summarized in Algorithm 2 as HT-RISE.

4 Numerical Experiments

In this section, we compare the proposed HT-RISE algorithm against an incremental tensor
train decomposition algorithm, TT-ICE∗, which is proven to demonstrate state-of-the-art
compression performance for the tensor train format in Aksoy et al. (2024a).

Comparisons are made on both scientific as well as image based datasets. Scientific
datasets include compressible Navier-Stokes simulations from PDEBench dataset (Takamoto
et al., 2022), as well as simulations of a PDE-driven chaotic system of self-oscillating gels (Al-
ben et al., 2019). For image based datasets, we will compare the algorithms with Minecraft
video frames from MineRL Basalt competition dataset (Milani et al., 2024) and multispec-
tral images from the BigEarthNet dataset (Sumbul et al., 2019, 2021). Table 1 summarizes
the datasets used in the experiments. We also include further analyses including the effect of
tensor reshapings (Appendix D.2) and the effect of different axis reorderings (Appendix D.3)
on the performance of HT-RISE in the appendices.

As a preview, we observe that TT-ICE∗ to perform better on simpler datasets such as the
self-oscillating gel snapshots or at higher relative error tolerances, while HT-RISE performs
better on larger datasets with intricate multi-scale features. Furthermore, HT-RISE is able
to generalize better to unseen data with fewer batches compared to TT-ICE∗. For image
datasets, HT-RISE retains more of the qualitative features of the original images compared
to TT-ICE∗ at the same relative error threshold.

All experiments are executed on University of Michigan compute nodes on the Light-
house cluster with 16 Intel(R) Xeon(R) Platinum 8468 cores and 64GB of memory. All
algorithms presented in this work are implemented in Python using the NumPy library (Har-
ris et al., 2020). We used the publicly available version of TT-ICE∗ from GitHub in our
experiments.

14

https://github.com/dorukaks/TT-ICE

Incremental Hierarchical Tucker

Table 1: Summary of the datasets used in the experiments. Train units and test units refer to the
number of simulations, videos, or images in the training and test sets, respectively. The batch size
refers to the number of simulations or images in a single batch. The batch shape refers to the original
shape of a single batch before performing any reshaping/resizing operations. The total size refers to
the total size of the dataset on disk. Sims, vids, and ims refer to simulations, videos, and images,
respectively.

Name Train units Test units Batch size Batch shape Total size

PDEBench 480 sims 120 sims 1 sim 64× 64× 64× 5× 21× 1 66 GB
Self-oscillating gels 8,000 sims 15,000 sims 1 sim 3367× 3× 10× 1 18 GB
Basalt MineRL 5449 vids 17 vids 20 frames 360× 640× 3× 20 183 GB
BigEarthNet 566,712 ims 23,612 ims 100 ims 120× 120× 12× 100 104 GB

4.1 Performance Metrics

This section presents the performance metrics used to compare the algorithms. The met-
rics are chosen to evaluate the accuracy of the approximation, the compression ratio, the
reduction ratio, the execution time, and the generalization performance.

4.1.1 Compression ratio (CR) and Reduction ratio (RR)

The compression ratio is a measure of how much each approximation compresses the original
accumulation. It is defined as

CR =
num elem(X k)

num elem(HXk)
, (20)

where num elem(X k) denotes the number of elements of the original accumulation and
num elem(HXk) is the number of elements of the approximation, which corresponds to the
sum of number of elements in all HT cores. A compression ratio of 1 indicates that the
approximation does not compress the original accumulation at all, while a compression ratio
below 1 indicates to an inefficient approximation that uses more elements to approximate
the original accumulation.

As shown in Chen et al. (2024), the TT-ICE∗ algorithm also provides a latent space
representation of the data, which can be used in downstream learning tasks. For downstream
tasks, the size of the input space plays a key role in computational efficiency. Therefore
in this study we also investigate how much reduction is achieved through the incremental
tensor decomposition algorithms and call this the reduction ratio (RR). The RR is the ratio
of the size of a single tensor in the accumulation to the size of the latent space. It is defined
as

RR =
num elem(Yk,i)

num elem(encode(Yk,i))
, (21)

where Yk,i denotes a single tensor from the Nk-batch of tensors, and project(Yk,i) denotes
the resulting latent space representation from encoding Yk,i using the relevant algorithm
— e.g., TT-ICE∗, HT-RISE, etc..

15

Aksoy and Gorodetsky

4.1.2 Compression time

Compression time is a measure of how long it takes to update the approximation. Note
that this does not consider the time it takes to load and preprocess the data.

In addition to the compression time, we also set a maximum walltime limit for each
experiment. The maximum walltime considers the time it takes to load the data onto
the memory, preprocess the data (if necessary), update the approximation, and check the
approximation error of the updated cores on the test set. If an experiment exceeds the
maximum walltime, the experiment is terminated and the metrics at the time of termination
are reported.

4.1.3 Relative test error

When using the compression for downstream learning tasks, having a latent mapping that
achieves a similar approximation error for both in- and out-of-sample datasets is valuable.
The relative test error (RTE) is a measure of how well the approximation generalizes to
unseen data. It is measured using the relative approximation error of tensors averaged over
the test set. This performance is expected to get better as each approximation method
is presented with more data. In the worst case, we expect the RTE to converge to εrel
asymptotically in the limit of infinite data. Specifically, the RTE is defined as

RTE =
1

Ntest

Ntest∑
i=1

∥Y i
test,k − Ỹ i

test,k∥F
∥Y i

test,k∥F
, (22)

where Y i
test,k is the i-th tensor in the test set and Ỹ i

test,k is the reconstruction of Y i
test,k using

the approximation HXk . Note that the RTE is averaged over individual tensors in the test
set, which can lead to higher RTE values than the target εrel especially when the HT-cores
are updated with batches of tensors.

The RTE is recomputed if the approximation is updated with streamed tensor. If the
approximation is updated frequently, computing the RTE becomes a dominant part of the
computational cost and often becomes the reason for the experiment to exceed the maximum
walltime.

4.2 Scientific data results

This section includes tests of HT-RISE’s performance to compress simulation outputs of
high-dimensional PDEs.

One of the main motivations for developing HT-RISEis to provide a tool for scientists to
analyze large-scale scientific data (Aksoy et al., 2022). In this section we compare the per-
formance of HT-RISE with other incremental tensor decomposition algorithms on scientific
data. We will use two different scientific datasets: PDEBench (Takamoto et al., 2022) and
a dataset comprised of self-oscillating gel simulations (Alben et al., 2019).

Each snapshot of simulation contains states corresponding to various physical quantities
(e.g. displacement, velocity, pressure, density etc.). Therefore, we normalize each physical
quantity individually similar to Aksoy et al. (2024b). In this work we consider maximum
absolute value (Ymaxabs), unit vector (Yunitvec), and z-score (Yz-score) normalizations in ad-
dition to compressing the unnormalized simulations. The normalizations are computed as

16

Incremental Hierarchical Tucker

follows:

Ymaxabs =
Y

max(|Y|) , Yunitvec =
Y
∥Y∥ , Yz-score =

Y − µ

σ
, (23)

where Y is the original tensor, and µ, σ are the mean and the standard deviation of the
entries of Y. Note that we do not learn a set of normalization parameters that encompasses
the entire accumulation. Instead, we treat each simulation in the training set individually
and normalize their states separately.

(a) 3D compressible Navier-Stokes sim-
ulations from PDEBench dataset

(b) Snapshots from self-oscillating gel
simulations

Figure 5: Example snapshots from scientific datasets.

4.2.1 Self-oscillating gel simulations

The first scientific dataset arises from solutions of a parametric PDE that simulates the
motion of a hexagonal sheet of self-oscillating gels. This dataset is used both in donwstream
learning tasks such as inverse design (Aksoy et al., 2022) as well as in experiments of
incremental tensor decompositions (Aksoy et al., 2024a) as a benchmark dataset.

The motion of the gel is governed by the following time-dependent parametric PDE (Al-
ben et al., 2019)

µ
∂r

∂t
= fs (r,Ks, η) + fB (r) , η (x, y, t,A,k) = 1 +A sin

(
2π

(
k
√
x2 + y2 − t

))
, (24)

where the bold terms indicate the input parameters to the forward model that define the
characteristics of the excitation as well as the mechanical properties of the gel. More
specifically, Ks denotes the stretching stiffness of the sheet, k determines the wavenumber
of the sinusoidal excitation, and A determines the amplitude of the wave traveling on
the sheet. Other terms governing the overdamped sheet dynamics are: internal damping
coefficient µ, material coordinates r = (x, y, z), stretching force fs, bending force fb, rest
strain η, and time t.

The simulations are chaotic, but we use 10 sequential timesteps from each simulation
as our data. Specifically, we seek to compress the x, y, and z coordinates of 3367 mesh

17

Aksoy and Gorodetsky

nodes on a hexagonal gel sheet for 10 time snapshots as shown in Figure 5b. To summarize,
the data consists of 3367 × 3 × 10 tensors for each parameter combination that contain
the coordinate information of the mesh. We refer to those output tensors as simulations
for brevity and treat them as individual incremental units. To increase the dimensionality
of the data, we reshape the 3-dimensional original tensor into 7 × 13 × 37 × 3 × 10 and
accumulate as batches of single simulation trajectories along an auxiliary 6-th dimension.

For this dataset, we have separate training and test sets. To construct the training
set, we uniformly discretize the 3-dimensional parameter space into 20 values along each
dimension and use their cross product to obtain 20 × 20 × 20 = 8000 unique parameter
combinations and then simulate each of those parameter combinations using the approach
in Alben et al. (2019). For the test set, randomly sample from the parameter space to obtain
15,000 unique parameter combinations and simulate each of those parameter combinations.
We use the training set to update the approximation and the test set to evaluate the
generalization performance. Since the selection of the training set is not random, we execute
each experiment only once and report the performance. We set the maximum wall time for
this experiment to 2 days.

We repeat the experiments for two relative error tolerances: εrel = 0.10, and εrel =
0.01. Figure 6 shows the best results for compression ratio and reduction ratio from the
selected normalization methods for both εrel settings. Figure 7 shows the best results for
compression time and test error for both εrel settings. More detailed results including
different normalization methods are presented in Table 2 below and Figures D.12 to D.15
in Appendix D.

0 2000 4000 6000 8000
Number of training simulations

100

101

102

103

104

C
om

pr
es

si
on

 R
at

io

0 2000 4000 6000 8000
Number of training simulations

100

101

102

103

104

105

106

R
ed

uc
tio

n
R

at
io

HT-RISE (0.10) TT-ICE* (0.10) HT-RISE (0.01) TT-ICE* (0.01)

Figure 6: Compression ratio (CR - left) and reduction ratio (RR - right) of the algorithms on the
self-oscillating gel dataset. TT-ICE∗ offers 2.5 − 3.3× the CR and 4.6 − 9.5× the RR of HT-RISE.
For more detailed comparisons, please refer to Figure D.12 for experiments with εrel = 0.10 and
Figure D.14 for experiments with εrel = 0.01.

Figure 6 shows the results of experiments without using any normalization. HT-RISE at
εrel = 0.10 achieves a CR of 90.70 and RR of 91.82 whereas TT-ICE∗ achieves a CR of
300.4 and RR of 420.9. Similar to εrel = 0.10, HT-RISE at εrel = 0.01 achieves a lower
CR (4.79×) compared to TT-ICE∗ (11.86×) and a lower RR (4.85×) compared to TT-ICE∗

18

Incremental Hierarchical Tucker

(46.27×). This can be explained by the relatively small size and the simpler nature of the
self-oscillating gel dataset. This allows TT-ICE∗ to find and exploit a low-rank structure
across the tensors in the accumulation. This claim is also supported by the reduction ratio
of TT-ICE∗, which corresponds to a latent space size of 2183 (recall that the training set
has 8000 simulations).

0 2000 4000 6000 8000
Number of training simulations

10 2

10 1

100

101

102

103

104

C
om

pr
es

si
on

 T
im

e

0 2000 4000 6000 8000
Number of training simulations

10 3

10 2

10 1

100

R
el

at
iv

e
Te

st
 E

rr
or Target = 0.10

Target = 0.01

HT-RISE (0.10) TT-ICE* (0.10) HT-RISE (0.01) TT-ICE* (0.01)

Figure 7: Compression time (left) and Relative Test Error (right) of the algorithms on the self-
oscillating gel dataset. HT-RISE takes 2.8− 3.2× the time it takes TT-ICE∗ to complete compressing
the stream. Neither method struggles to reduce the RTE below the target ε for both εrel = 0.10 and
0.01. For more detailed comparisons, please refer to Figure D.13 for experiments with εrel = 0.10
and Figure D.15 for experiments with εrel = 0.01.

Figure 7 shows the results of experiments on compression time and relative test error
without using any normalization. HT-RISE at εrel = 0.10 takes 77.16 seconds to compress
all 8000 simulations and achieves a RTE of 0.052. On the other hand, TT-ICE∗ takes
26.99 seconds to compress all 8000 simulations and achieves a RTE of 0.037. HT-RISE at
εrel = 0.01 takes 1699.8 seconds to compress all 8000 simulations and achieves a RTE of
0.007. On the other hand, TT-ICE∗ takes 526.9 seconds to compress all 8000 simulations and
achieves a RTE of 0.007. HT-RISE takes 2.8 − 3.2× the time it takes TT-ICE∗ to complete
compressing the stream.

Neither method struggles to reduce the RTE below the target ε for both εrel = 0.10
and 0.01. This is expected as the self-oscillating gel dataset is relatively simple and has a
low-dimensional structure that can be captured by both methods. This is evidenced by both
algorithms driving the RTE well below the target ε. The hierarchy of dimensions introduced
by the HT format does not provide a significant advantage in terms of approximation
performance but becomes a hindrance in terms of computational efficiency. This is reflected
as the difference in compression time between HT-RISE and TT-ICE∗.

Table 2 summarizes the rest of our experiments with the self-oscillating gel dataset. The
table shows the total time taken to compress the entire dataset, the compression ratio, the
reduction ratio, and the mean relative approximation error over the test set. The table also
shows the normalization method used for each experiment. The experiments are repeated
for two relative error tolerances: εrel = 0.10 and εrel = 0.01. The results further support

19

Aksoy and Gorodetsky

our claim that HT-RISE is overcomplicated for this dataset and therefore TT-ICE∗ performs
better in terms of our metrics. TT-ICE∗ consistently outperforms HT-RISE in terms of
compression ratio, compression time, and relative test error, except for the experiments at
εrel = 0.01 using unit vector and z-score normalizations. At those experiments TT-ICE∗

runs into maximum walltime issues.

Table 2: Summary of the compression experiments with the self-oscillating gel dataset. Norm:
method of normalization, Algorithm: the incremental tensor decomposition algorithm, #Sims: num-
ber of simulations compressed, Comp. Time: total time in seconds, CR: compression ratio, RR:
reduction ratio, RTE: mean relative test error over the test set. ‡ indicates that the experiment did
not complete due to a timeout, † indicates that the experiment did not complete due to running out
of memory.

εrel Norm Algorithm #Sims Comp. Time (s) CR RR RTE

0.10

None
HT-RISE 8000 77.16 90.70 91.82 0.052
TT-ICE∗ 8000 26.99 300.4 420.9 0.037

UnitVec
HT-RISE 8000 203.2 35.45 36.16 0.059
TT-ICE∗ 8000 39.29 124.9 220.1 0.059

Z-score
HT-RISE 8000 226.9 33.67 34.35 0.066
TT-ICE∗ 8000 41.83 117.6 215.4 0.058

0.01

None
HT-RISE 8000 1699.8 4.79 4.85 0.007
TT-ICE∗ 8000 526.9 11.86 46.27 0.007

UnitVec
HT-RISE 8000 1929.2 4.11 4.17 0.012
TT-ICE∗ 5100‡ 119.4 27.15 70.34 0.020

Z-score
HT-RISE 8000 3029.1 3.03 3.08 0.098
TT-ICE∗ 5086‡ 177.1 16.69 67.25 0.022

4.2.2 PDEBench 3D Navier-Stokes simulations

Next we compare the performance of HT-RISEwith other incremental tensor decomposi-
tion algorithms on a more challenging scientific dataset. PDEBench dataset (Takamoto
et al., 2022) is a benchmark suite for scientific machine learning tasks. It provides di-
verse datasets with distinct properties based on 11 well-known time-dependent and time-
independent PDEs.

From the PDEBench dataset, we use the 3D compressible Navier-Stokes simulations
with M = 1.0 and turbulent initial conditions. The data consists of 3 velocity (vx, vy, vz),
pressure, and density fields at 21 time steps for 600 different initial conditions. The simula-
tion space is dicretized into a 64× 64× 64 grid. The compressible Navier stokes equations
that are used to generate the dataset are:

∂tρ+∇ · (ρv) = 0,

ρ (∂tv + v · ∇v) = −∇p+ η∆v +
(
ζ +

η

3

)
∇(∇ · v),

∂t(ϵ+ ρν2) +∇ ·
[
(p+ ϵ+

ρν2

2
)v − v · σ′

]
= 0,

(25)

20

Incremental Hierarchical Tucker

where ρ is the mass density, v is the fluid velocity, p is the gas pressure, ϵ is the internal
energy, σ′ is the viscous stress tensor, and η and ζ are shear and bulk viscosities, respectively.
Each simulation from the dataset creates a 5-dimensional tensor of size 64×64×64×5×21.
This results in simulations that are ∼ 270× larger than the self-oscillating gel simulations.

To increase the dimensionality of the dataset, we reshape each simulation into a 8-
dimensional tensor of shape 8 × 8 × 8 × 8 × 8 × 8 × 5 × 21 and accumulate in batches of
single simulation trajectory along an auxiliary 9-th dimension.

We randomly split 600 simulations into training and test sets with a ratio of 80% and
20%, respectively. We use the training set to update the approximation and the test set to
evaluate the generalization performance. Since the selection of the training set is random,
we repeat each experiment with five different seeds and report the average performance. We
set the maximum wall time for each experiment to four days. We repeat the experiments
for two relative error tolerances: εrel = 0.10, and εrel = 0.05. Figure 8 shows the best
results for compression ratio and reduction ratio from the selected normalization methods
for both εrel settings. Figure 9 shows the best results for compression time and test error
for both εrel settings. More detailed results are presented in Table 3 below and Figures D.8
to D.11 in Appendix D.

0 100 200 300 400 500
Number of training simulations

100

101

102

C
om

pr
es

si
on

 R
at

io

0 100 200 300 400 500
Number of training simulations

100

102

104

106

108

R
ed

uc
tio

n
R

at
io

HT-RISE (0.10) TT-ICE* (0.10) HT-RISE (0.05) TT-ICE* (0.05)

Figure 8: Compression ratio (CR - left) and reduction ratio (RR- - right) of the algorithms on
the PDEBench 3D turbulent Navier-Stokes dataset. HT-RISE offers 2.4 − 3.1× the CR of TT-ICE∗

but results in orders of magnitude lower RR. TT-ICE∗ does not complete the entire stream due
to maximum walltime timeout whereas HT-RISE successfully completes the task. The results are
averaged over 5 seeds. For more detailed comparisons, please refer to Figure D.8 for experiments
with εrel = 0.10 and Figure D.10 for experiments with εrel = 0.05.

Figure 8 shows the results of experiments without using any normalization. HT-RISE at
εrel = 0.10 achieves a CR of 32.83 and RR of 33.09 whereas TT-ICE∗ achieves a CR of
10.49 and RR of 82, 658. Note that TT-ICE∗ runs into maximum walltime issues at this
experiment and is only able to compress 333 simulations out of 480. Similar to εrel =
0.10, HT-RISE at εrel = 0.05 achieves a higher CR (10.2×) compared to TT-ICE∗ (4.34×)
but a lower RR (10.34×) compared to TT-ICE∗ (119, 674×). This time TT-ICE∗ runs into
maximum walltime issues and is only able to compress 229 simulations out of 480. The

21

Aksoy and Gorodetsky

orders of magnitude discrepancy between the RR of TT-ICE∗ and HT-RISE is caused by the
fact that the size of the latent space representation is upper bounded by the number of
tensors in the accumulation for TT-ICE∗. As HT-RISE does not have such a limit, the latent
space grows in parallel to the complexity of the streamed data. TT-ICE∗ hitting the latent
space upper bound further indicates that TT-ICE∗ is not able to find a low-rank structure
across the tensors in the accumulation in contrast to self-oscillating gels dataset.

0 100 200 300 400 500
Number of training simulations

100

101

102

103

104

C
om

pr
es

si
on

 T
im

e

0 100 200 300 400 500
Number of training simulations

10 2

10 1

100

R
el

at
iv

e
Te

st
 E

rr
or

Target = 0.10

Target = 0.05

HT-RISE (0.10) TT-ICE* (0.10) HT-RISE (0.05) TT-ICE* (0.05)

Figure 9: Compression time (left) and Relative Test Error (right) of the algorithms on the
PDEBench 3D turbulent Navier-Stokes dataset. Until TT-ICE∗ hits the maximum walltime limit,
TT-ICE∗ takes 1.8− 3.2× of the time it takes HT-RISE to complete compressing the stream. In addi-
tion, TT-ICE∗ struggles to reduce the RTE below the target ε levels in both cases whereas HT-RISE re-
duces the RTE below the ε within 15 simulations. Recall that TT-ICE∗ does not complete the entire
stream due to maximum walltime timeout whereas HT-RISE successfully completes the task. The
results are averaged over 5 seeds. For more detailed comparisons, please refer to Figure D.9 for
experiments with εrel = 0.10 and Figure D.11 for experiments with εrel = 0.05.

Figure 9 shows the results of experiments on compression time and relative test error
without using any normalization. HT-RISE at εrel = 0.10 takes 1165.90 seconds to compress
all 480 simulations and achieves a RTE of 0.098. On the other hand, TT-ICE∗ takes 3727.38
seconds to compress 333 simulations and achieves a RTE of 0.487. HT-RISE at εrel = 0.05
takes 2505.58 seconds to compress all 480 simulations and achieves a RTE of 0.049. On
the other hand, TT-ICE∗ takes 4581.78 seconds to compress 229 simulations and achieves a
relative test error of 0.493. TT-ICE∗ struggles to reduce the RTE below the target ε levels
in both cases whereas HT-RISE reduces the relative test error below the ε within the first
15 simulations. This observation further supports the claim that TT-ICE∗ is not able to
find a generalized low-rank structure across the tensors in the accumulation. As a result of
its hierarchical structure, HT-RISE discovers a low-rank structure across the tensors in the
accumulation and is able to generalize well to unseen data. As a result, HT-RISE requires
much fewer updates to the approximation to achieve the target ε than TT-ICE∗. This is also
reflected in the compression time as both HT-RISE curves taper off as soon as the RTE falls
below their respective ε, whereas curves for TT-ICE∗ continue to increase steadily. Frequent

22

Incremental Hierarchical Tucker

updates of TT-ICE∗ is also the reason why TT-ICE∗ runs into maximum walltime issues, as
each update is succeeded with RTE computation over the entire test set.

Table 3 summarizes the rest of our experiments with the PDEBench 3D turbulent
Navier-Stokes dataset. The table shows the total time taken to compress the entire dataset,
the compression ratio, the reduction ratio, and the RTE. The table also shows the normaliza-
tion method used for each experiment. The experiments are repeated for two relative error
tolerances: εrel = 0.10 and εrel = 0.05. The results show that HT-RISE consistently out-
performs TT-ICE∗ in terms of compression ratio, compression time, and RTE. HT-RISE also
completes the task within the maximum walltime limit (4 days) in all experiments (except
for Z-score normalization at εrel = 0.05, where it runs into memory issues), whereas TT-ICE∗

runs into maximum walltime issues in all experiments.

Table 3: Summary of the compression experiments with the PDEBench 3D turbulent Navier-Stokes
dataset. The results are averaged over 5 seeds. Norm: method of normalization, Algorithm: the in-
cremental tensor decomposition algorithm, #Sims: number of simulations compressed, Comp. Time:
total time in seconds, CR: compression ratio, RR: reduction ratio, RTE: mean relative test error over
the test set. Please refer to Figures D.8 and D.9 for experiments with εrel = 0.10 and Figures D.10
and D.11 for experiments with εrel = 0.05. MaxAbs: Maximum absolute value normalization, None:
No normalization, UnitVec: Unit vector normalization, Z-score: Z-score normalization. ‡ indicates
that the experiment did not complete due to a timeout, † indicates that the experiment did not com-
plete due to running out of memory.

εrel Norm Algorithm #Sims Comp. Time (s) CR RR RTE

0.10

MaxAbs
HT-RISE 480 1706.84 19.73 19.89 0.087
TT-ICE∗ 292‡ 3824.33 7.94 94,264 0.609

None
HT-RISE 480 1165.90 32.83 33.09 0.098
TT-ICE∗ 333‡ 3727.38 10.49 82,658 0.487

UnitVec
HT-RISE 480 1863.73 16.80 16.92 0.096
TT-ICE∗ 267‡ 3989.26 6.72 102,705 0.762

Z-score
HT-RISE 480 3007.92 9.08 9.20 0.097
TT-ICE∗ 213‡ 4287.14 3.97 128,622 0.962

0.05

MaxAbs
HT-RISE 480 3594.18 7.08 7.18 0.044
TT-ICE∗ 194‡ 4462.31 3.53 141,154 0.617

None
HT-RISE 480 2505.58 10.26 10.34 0.049
TT-ICE∗ 229‡ 4581,78 4.34 119,674 0.493

UnitVec
HT-RISE 480 3911.02 6.26 6.30 0.048
TT-ICE∗ 177‡ 4503.89 2.93 154,635 0.771

Z-score
HT-RISE 477† 7122.89 3.18 3.19 0.048
TT-ICE∗ 144‡ 4877.19 1.82 189,828 0.970

Summmary of conclusions from experiments with scientific data: The experi-
ments with scientific data demonstrate that HT-RISE provides superior generalization per-
formance compared to TT-ICE∗ across both datasets. HT-RISE consistently reduces the
RTE below the target ε levels within fewer simulations. TT-ICE∗ results in significantly
higher RR due to the properties of the TT-format across both datasets but falls short in
CR when the dataset becomes large. The importance of normalization for scientific data is
also demonstrated in Tables 2 and 3, showing that it can significantly affect the performance
of the compression algorithms. Overall, the results suggest that HT-RISE is more suitable

23

Aksoy and Gorodetsky

for scientific datasets with complex multi-scale structures, while TT-ICE∗ may be more
appropriate for simpler datasets where the low-rank structure can be effectively captured.

4.3 Image data

In addition to the scientific data, we will also compare the algorithms on image data. The
image data will be obtained from two different sources: The MineRL Basalt competition
dataset (Milani et al., 2024) and multispectral images from the BigEarthNet dataset (Sum-
bul et al., 2019, 2021).

(a) MineRL Basalt competition dataset (b) Sentinel2 images (RGB channels only)

Figure 10: Example frames from image-based datasets.

4.3.1 Minecraft frames

First person games are of interest for inverse reinforcement learning purposes. The MineRL
Basalt competition dataset (Milani et al., 2024) contains gameplay episodes from the game
Minecraft and is designed for the purpose of training agents to perform tasks in the game.
The dataset contains gameplay episodes from 4 different tasks, which are designed to be
challenging for reinforcement learning agents. Each episode is an end-to-end gameplay video
that starts at the corresponding initial setting for each scenario and ends with successful
completion of the assignment. Therefore, each episode varies in duration. The original
videos have a resolution of 640× 360 pixels and a frame rate of 20 frames per second.

The MineRL dataset contains demonstrations for the following 4 tasks:

• Find Cave: Look around for a cave. When you are inside one, press ESCAPE to
end the minigame.

• Make Waterfall: After spawning in a mountainous area with a water bucket and
various tools, the agent builds a waterfall and then repositions themself to “take a
scenic picture” of the same waterfall.

24

Incremental Hierarchical Tucker

• Build Animal Pen: After spawning in a village, the agent builds an animal pen
next to one of the houses in a village using fence posts from inventory to build one
animal pen that contains at least two of the same animal.

• Build Village House: Taking advantage of the items in the inventory, the agent
builds a new house in the style of the village (random biome), in an appropriate
location (e.g. next to the path through the village), without harming the village in
the process. Then gives a brief tour of the house (i.e. spin around slowly such that
all of the walls and the roof are visible).

The dataset contains approximately 20,000 gameplay episodes in total. This translates to
approximately 160 GB of gameplay epsiodes per task. In this study we only focus on the Find
Cave task. The Find Cave task has 5466 gameplay episodes, totaling a size of 183GB on
disk. Similar to Baker et al. (2022), we downsample the 640×360 frames to 128×128. This
results in a 4-dimensional dataset 128× 128× 3×Nframes, where Nframes is the number of
frames in a video. Furthermore, we increase the dimensionality of the dataset by reshaping
the original frames into 9-dimensional tensor of size 2× 4× 4× 4× 8× 8× 2× 3×Nframes

and accumulate them as batches of 20 along the 9-th dimension, i.e. Nframes = 20.

We select 17 videos from the dataset as test set at random and use the rest for training.
Since the size of the dataset exceeds the allocated memory for each experiment by almost
a factor of three, we do not expect the algorithms to compress all 5466 videos. This
experiment aims to push the algorithms to their limits given limited computational and
hardware resources. We repeat the experiments for three relative error tolerances: εrel =
0.30, εrel = 0.20, and εrel = 0.10. The maximum wall time for this experiment is set to
two days. Since the selection of the test set is random, we execute each experiment five
times and report the average performance. The results are summarized in Table 4 and are
presented in detail in Figures 11 and 12.

100 101 102 103 104 105

Training Batches

100

101

102

103

104

C
om

pr
es

si
on

 R
at

io

100 101 102 103 104 105

Training Batches

100

101

102

103

104

105

R
ed

uc
tio

n
R

at
io

HT-RISE (0.10)
TT-ICE* (0.10)

HT-RISE (0.20)
TT-ICE* (0.20)

HT-RISE (0.30)
TT-ICE* (0.30)

Figure 11: Compression ratio (CR - left) and reduction ratio (RR - right) of the algorithms on
the Basalt MineRL dataset.TT-ICE∗ offers 1− 2.9× the CR and 1.6− 3× the RR of HT-RISE. The
results are averaged over 5 seeds.

25

Aksoy and Gorodetsky

Figure 11 shows the results of experiments on compression ratio and reduction ratio for
the MineRL Basalt competition dataset. HT-RISE at εrel = 0.30 achieves a CR of 6.29 and
RR of 6.29 whereas TT-ICE∗ achieves a CR of 18.3 and RR of 18.9. Similar to εrel = 0.30,
HT-RISE at εrel = 0.20 achieves a lower CR (3.53×) compared to TT-ICE∗ (6.45×) and
a lower RR (3.53×) compared to TT-ICE∗ (7.13×). This trend continues for εrel = 0.10
where HT-RISE achieves a lower CR (1.85×) compared to TT-ICE∗ (1.88×) and a lower RR
(1.85×) compared to TT-ICE∗ (2.96×).

100 101 102 103 104 105

Training Batches

10 1

100

101

102

103

104

105

106

To
ta

l T
im

e

100 101 102 103 104 105

Training Batches

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
Va

lid
at

io
n

E
rr

or

HT-RISE (0.10)
TT-ICE* (0.10)

HT-RISE (0.20)
TT-ICE* (0.20)

HT-RISE (0.30)
TT-ICE* (0.30)

Figure 12: Compression time (left) and Relative Test Error (right) of the algorithms on the Basalt
MineRL competition dataset. Each target ε level is shown with dashed lines of their corresponding
color. HT-RISE takes 2.8−3.2× the time it takes TT-ICE∗ to complete compressing the stream. Only
TT-ICE∗ at εrel = 0.1 struggles to reduce the RTE below the target ε threshold. The results are
averaged over 5 seeds.

Figure 12 shows the results of experiments on compression time and relative test error
for the MineRL Basalt competition dataset. HT-RISE at εrel = 0.30 takes 188, 405 seconds
to compress 22,625 batches (449k frames - 375 videos) and achieves a RTE of 0.208. On
the other hand, TT-ICE∗ takes 143, 873 seconds to compress 38,146 batches (757k frames
- 635 videos) and achieves a RTE of 0.202. HT-RISE at εrel = 0.20 takes 153, 146 seconds
to compress 15,222 batches (302k frames - 252 videos) and achieves a RTE of 0.166. On
the other hand, TT-ICE∗ takes 116, 418 seconds to compress 20,350 batches (404k frames
- 339 videos) and achieves a RTE of 0.161. HT-RISE at εrel = 0.10 takes 78, 286 seconds
to compress 7863 batches (156k frames - 127 videos) and achieves a RTE of 0.083. On
the other hand, TT-ICE∗ takes 26, 756 seconds to compress 4861 batches (96k frames - 80
videos) and achieves a RTE of 0.119. Only TT-ICE∗ at εrel = 0.10 struggles to reduce the
RTE below the target ε threshold. The trend in Figure 12 suggests that this issue pertains
to the lack of sufficient training data for TT-ICE∗ to learn a generalizable approximation and
should be resolved once the algorithm is presented with further gameplay episodes. Another
important takeaway from Figure 12 is that for εrel = 0.20 and εrel = 0.30, HT-RISE reduces
the RTE below the target ε threshold within significantly less training batches compared to
TT-ICE∗. HT-RISE crosses the RTE threshold in 82 and 19 batches, whereas TT-ICE∗ crosses

26

Incremental Hierarchical Tucker

the RTE threshold in 1597 and 322 batches for εrel = 0.20 and εrel = 0.30, respectively.
This suggests that HT-RISE generalizes better with less training data compared to TT-ICE∗

regardless of the target ε level.

One important thing to note from Table 4 is that except for εrel = 0.10, TT-ICE∗

compresses more frames than HT-RISE. Furthermore, in contrast to HT-RISE, TT-ICE∗ runs
into walltime issues rather than memory issues for all target ε levels. This suggests that
TT-ICE∗ is more memory efficient than HT-RISE. This is no surprise as the number of tensors
in the accumulation goes to extreme levels (+100k), the RR dominates the overall cost of
storing the compressed representations in memory. Since TT-ICE∗ has a 1-dimensional
(i.e. a vector) latent space as opposed to the 2-dimensional (i.e. a matrix) latent space of
HT-RISE, the growth of the latent space is slower for TT-ICE∗ compared to HT-RISE.

Table 4: Summary of the compression experiments with the MineRL Basalt competition dataset.
The results are averaged over 5 seeds. Algorithm: the incremental tensor decomposition algorithm,
#Batches: number of batches compressed, Comp. Time: total time in seconds, CR: compression
ratio, RR: reduction ratio, RTE: mean relative test error over the test set. ‡ indicates that the
experiment did not complete due to a timeout, † indicates that the experiment did not complete due
to running out of memory.

εrel Algorithm #Batches Comp. Time CR RR RTE

0.30
HT-RISE 22,625†‡ 188,405 6.29 6.29 0.208
TT-ICE∗ 38,146‡ 143,873 18.3 18.9 0.202

0.20
HT-RISE 15,222† 153,146 3.53 3.53 0.166
TT-ICE∗ 20,350‡ 116,418 6.45 7.13 0.161

0.10
HT-RISE 7863† 78,286 1.85 1.85 0.083
TT-ICE∗ 4861‡ 26,756 1.88 2.96 0.119

4.3.2 Multispectral images

Another natural occurence of high-dimensional data in the form of images is multispectral
satellite imagery. The BigEarthNet dataset (Sumbul et al., 2021, 2019) consists of 590,326
image patches, each of which is a 120x120x12 pixel multispectral image. The dataset has
a size of 66GB. The images are taken from the Sentinel-2 satellite and contain 12 spectral
bands. Table 5 lists the spectral bands and their wavelengths. The images are taken from
125 different locations around the world. The dataset is originally designed for land cover
classification and land use analysis. Therefore, the images are labeled with 43 different
land cover classes. As we do not aim to showcase the use cases of the latent space learned
through incremental tensor decompositions in this work, we do not consider the labels of
the images in any part of the compression experiments.

From the 590,326 images, we select 23,602 images at random as the test set and use the
rest for training. We repeat the experiments for two relative error tolerances: εrel = 0.30
and εrel = 0.10. The maximum wall time for this experiment is set to 2 days. Since the
selection of the test set is random, we execute each experiment 5 times and report the
average performance. The results are summarized in Table 6 and are presented in detail
in Figures D.16 and D.17. To increase the dimensionality of the dataset, we reshape the

27

Aksoy and Gorodetsky

Table 5: Names and wavelengths of spectral bands of Sentinel2 images. SWIR: Short Wave Infrared,
NIR: Near Infrared. The bands are ordered in increasing wavelength.

Band Name
Central

Bandwidth (mm) Description
Wavelength (nm)

B01 442.7 21 Coastal aerosol
B02 492.4 66 Blue
B03 559.8 36 Green
B04 664.6 31 Red
B05 704.1 15 Vegetation Red Edge 1
B06 740.5 15 Vegetation Red Edge 2
B07 782.8 20 Vegetation Red Edge 3
B08 832.8 106 NIR
B08A 864.7 21 Narrow NIR
B09 945.1 20 Water Vapor
B11 1613.7 91 SWIR 1
B12 2202.4 175 SWIR 2

original multispectral images into 5-dimensional tensors of size 12× 10× 12× 10× 12 and
accumulate them as batches of 100 along an auxiliary 6-th dimension.

Table 6: Summary of the compression experiments with the BigEarthNet multispectral satellite
imagery dataset. The results are averaged over 5 seeds. Algorithm: the incremental tensor decom-
position algorithm, #Batches: number of batches compressed, Comp. Time: total time in seconds,
CR: compression ratio, RR: reduction ratio, RTE: mean relative test error over the test set. ‡ indi-
cates that the experiment did not complete due to a timeout, † indicates that the experiment did not
complete due to running out of memory.

εrel Algorithm #Batches Comp. Time CR RR RTE

0.30
HT-RISE 5668 2482.3 1154.3 962.04 0.242
TT-ICE∗ 5668 6239.6 2274.0 1901.1 0.260

0.15
HT-RISE 5668 14,896 91.45 76.21 0.149
TT-ICE∗ 5668 18,866 117.9 100.8 0.133

0.10
HT-RISE 5668 49,408 32.68 27.24 0.104
TT-ICE∗ 5668‡ 44,687 35.31 31.03 0.088

0.05
HT-RISE 1781† 20,880 7.29 6.07 0.054
TT-ICE∗ 129‡ 1720.0 3.59 19.76 0.069

Table 6 shows that both algorithms are able to completely compress the entire dataset,
which exceeds the allocated memory for the experiments, without running into any memory
issues for target relative error thresholds εrel = 0.30−0.10. Three out of five experiments for
TT-ICE∗ at εrel = 0.10 and five out of five experiments at εrel = 0.05 did not complete due
to a timeout. HT-RISE at εrel = 0.05 runs out of the allocated memory after compressing
1781 batches (∼178,000 images).

For higher relative error thresholds, TT-ICE∗ achieves higher CR and RR than HT-RISE but
takes a longer time. At εrel = 0.30, HT-RISE achieves a CR of 1154.3× and a RR of 962.04×

28

Incremental Hierarchical Tucker

in 2482 seconds, whereas TT-ICE∗ surpasses HT-RISE with a CR of 2274.0× and a RR of
1901.1× in 6239 seconds. The results at εrel = 0.15 show that TT-ICE∗ compresses the
training dataset in 18, 866 seconds, which is 1.27× the time it takes HT-RISE to compress
the same data. However, TT-ICE∗ achieves a CR of 117.9× and a RR of 100.8× in contrast
to HT-RISE with a CR of 91.5× and a RR of 76.2×.

At εrel = 0.10, TT-ICE∗ compresses the training dataset in 44, 687 seconds and achieves
a CR of 35.31× and a RR of 31.03×. HT-RISE compresses the same data in 49, 408 sec-
onds and achieves a CR of 32.68× and a RR of 27.24×. Note that despite the compression
time for HT-RISE at εrel = 0.10 is longer than TT-ICE∗, HT-RISE successfully completes the
compression task within the allocated maximum walltime. This indicates that TT-ICE∗ per-
forms significantly more updates to its approximation compared to HT-RISE and therefore
spends most of the allocated walltime to compute the RTE. One interesting thing to note
here is that the RTE of HT-RISE is above the target εrel = 0.10. The updates are computed
for batches of 100 images but the RTE is computed over single images in the test set. This
discrepancy in the batch size used for updates and the batch size used for computing the
RTE is likely the reason for the high RTE.

At εrel = 0.05, HT-RISE compresses 1781 batches in 20, 880 seconds and achieves a CR
of 7.29× and a RR of 6.07×. TT-ICE∗ compresses 129 batches in 1720 seconds and achieves
a CR of 3.59× and a RR of 19.76×. Note that at this target ε level, TT-ICE∗ runs into a
timeout issue and does not complete the compression task. On the other hand, HT-RISE runs
into memory issues for all five seeds and does not complete the compression task. Further
quantitative comparisons are provided in Figures D.16 and D.17 in Appendix D.6.

Figures 13 and 14 present a qualitative comparison for the reconstructions of the multi-
spectral images from the BigEarthNet dataset using εrel between 0.05 and 0.30. Images in
Figure 13 are generated by reconstructing latent space representations of a training image
learned during the compression process. Images in Figure 14 are generated by reconstruct-
ing latent space representations of a test image that was not seen during the compression
process. This is done by first projecting the unseen multispectral image onto the cores of
the corresponding tensor networks and then reconstructing the image from the projection.
The images are displayed in RGB format, where only the bands B02, B03, and B04 are
used.

Figure 13 shows that the quality of the reconstructed images decreases as the target ε
level increases. Specifically beyond εrel = 0.10, the images become significantly pixelated
and lose their original features. For εrel = 0.05 and 0.10, HT-RISE reconstructs sharper
images compared to TT-ICE∗. This becomes evident especially at the finer details such as
roads. HT-RISE at εrel = 0.05 results in the best reconstruction. This reconstruction has
slight discoloration in comparison to the original image and maintains the fine features well.

To demonstrate the generalization performance qualitatively, we present the reconstruc-
tions of the test images in Figure 14. Similar to training data, the quality of the recon-
structed images decreases as the target ε level increases. However, this time the difference
between HT-RISE and TT-ICE∗ is more pronounced. For εrel = 0.05 and 0.10, TT-ICE∗

introduces a significant amount of noise in the images which reduces the image quality.
While offering a better reconstruction quality at all target ε levels, HT-RISE at εrel = 0.05
results in the best reconstruction. In parallel with our findings with the training images, the

29

Aksoy and Gorodetsky

(a) Original (b) εrel = 0.05 (c) εrel = 0.10 (d) εrel = 0.15 (e) εrel = 0.20 (f) εrel = 0.30

Figure 13: Reconstructed multispectral images from BigEarthNet’s training set, captured by the
Sentinel-2 satellite, are displayed. Images compressed using HT-RISE are in the top row, while those
compressed with TT-ICE∗ appear in the bottom row. Different columns represent reconstructions
at varying ε target levels, from εrel = 0.05 to εrel = 0.30. Image quality decreases severely after
εrel = 0.10 for both algorithms. For εrel = 0.05 and 0.10, HT-RISE results in shaper images compared
to TT-ICE∗. These images have been reconstructed from their latent representations, with only the
RGB bands (B02, B03, B04) being depicted.

(a) Original (b) εrel = 0.05 (c) εrel = 0.10 (d) εrel = 0.15 (e) εrel = 0.20 (f) εrel = 0.30

Figure 14: Reconstructed multispectral images from BigEarthNet’s test set, captured by the Sentinel-
2 satellite, are displayed. Images compressed using HT-RISE are in the top row, while those com-
pressed with TT-ICE∗ appear in the bottom row. Different columns represent reconstructions at vary-
ing ε target levels, from εrel = 0.05 to εrel = 0.30. Image quality decreases severely after εrel = 0.15
for HT-RISE and after εrel = 0.10 for TT-ICE∗. For all εrel levels, HT-RISE results in shaper images
compared to TT-ICE∗. These images have been reconstructed from their latent representations, with
only the RGB bands (B02, B03, B04) being depicted.

30

Incremental Hierarchical Tucker

reconstruction has slight discoloration in comparison to the original image and maintains
the fine features well.

Summmary of conclusions from experiments with image data: Similar to the
experiments with scientific data, the experiments with image data also demonstrate that
HT-RISE provides superior generalization performance compared to TT-ICE∗ across both
investigated datasets. HT-RISE consistently achieves lower RTE at all ε levels within fewer
frames and compresses in less time than TT-ICE∗. TT-ICE∗ starts off with higher RR due to
the properties of the TT-format but the RRs of both algorithms become comparable towards
the end of the experiments, regardless of the target ε level. One interesting observation
here is that for higher ε levels, TT-ICE∗ achieves higher CR than HT-RISE but the image
reconstructions yield lower quality at those target ε levels. For the MineRL competition
dataset TT-ICE∗ compresses more frames than HT-RISE except for ε = 0.10, but this is
caused by the 1D latent space of TT-ICE∗ which is more memory efficient than the 2D
latent space of HT-RISE when > 200, 000 frames are used. Overall, the results suggest that
HT-RISE is more suitable for image datasets especially when the training dataset is limited
or the visual quality of the reconstructions is important. TT-ICE∗ may be more appropriate
when higher errors are allowed for compression.

5 Conclusion

In this work we proposed the batch hierarchical Tucker format, a slightly modified but
more efficient version of the hierarchical Tucker format that is also suitable for incremental
updates, and a new incremental tensor decomposition algorithm called Hierarchical Incre-
mental Tucker (HT-RISE), which, to the best of our knowledge, is the first incremental
tensor decomposition algorithm that updates an approximation in the hierarchical Tucker
format. We compared HT-RISE with an state-of-the-art incremental tensor decomposition
algorithm TT-ICE∗ using two PDE-based and two image-based datasets. The results indi-
cate that in datasets with multi-scale features HT-RISE offers a fast and memory efficient
way to compress high-dimensional data with a low relative test error. In simpler datasets,
TT-ICE∗ outperforms HT-RISE in terms of compression ratio, compression time, and relative
test error. The results also suggest that HT-RISE generalizes better with less training data
compared to TT-ICE∗ regardless of the target ε level and the dataset.

Future work includes parallelizing HT-RISE to speed up the compression process, provide
a version of HT-RISE to take advantage of GPU acceleration, and extending the HT-RISE al-
gorithm to work with n-ary trees. Furthermore, we plan to use the latent space learned
through HT-RISE in downstream learning tasks (such as generative modeling) to showcase
the usability of the learned representations through HT-RISE.

Acknowledgments and Disclosure of Funding

We acknowledge partial support by Los Alamos National Laboratories under the project
“Algorithm/Software/Hardware Co-design for High Energy Density applications” at the
University of Michigan, and partial support from the Automotive Research Center at the
University of Michigan (UM) in accordance with Cooperative Agreement W56HZV-19-2-

31

Aksoy and Gorodetsky

0001 with U.S. Army DEVCOMGround Vehicle Systems Center. This work used computing
resources provided by an AFOSR DURIP under Program Manager Dr. Fariba Fahroo and
grant number FA9550- 23-1-006 and additional computational resources and services pro-
vided by Advanced Research Computing (ARC), a division of Information and Technology
Services (ITS) at the University of Michigan, Ann Arbor

Appendix A. Proofs

This section contains mathematical proofs for the correctness of the BHT-l2r and HT-RISE al-
gorithms.

To guarantee the correctness of the BHT-l2r algorithm, we first need to show that we
can compute an upper bound for the approximation error incurred at an individual layer.
This is done in the following lemma.

Lemma 2 (Layerwise approximation error) Given an N -batch of d-dimensional ten-

sors Y ∈ Rn1×···×nd×N , the approximation error incurred at the ℓ-th layer
√
∥Cℓ+1∥2F − ∥Cℓ∥2F

is upper bounded by√√√√|Tℓ|∑
i=1

∥Eℓ,i∥2F , where Eℓ,i := Cℓ,(i) − Uℓ,iΣℓ,iV
T
ℓ,i

is the truncated portion the SVD performed on the mode-i unfolding of the intermediate
tensor Cℓ at the ℓ-th layer.

Proof This is a straight forward result following the application of (Grasedyck, 2010,
Lemma 3.8) to each node in Tℓ. In Equation (8), we have shown that the core tensor
at the ℓ-th layer is computed by contracting the core tensor at the (ℓ + 1)-th layer with
orthonormal matrices obtained through error-truncated SVDs on the ℓ-th layer. Thus,
decomposing the ℓ-th layer can be seen analogous to the notion successive truncation of
Lemma 3.8 of Grasedyck (2010). Therefore, we can upper bound the approximation error
at the ℓ-th layer with the sum of the Frobenius norms of the truncated error matrices Eℓ,i.

Theorem 2 is a crucial step in providing an upper bound on the total approximation
error of the BHT-l2r algorithm. The total approximation error is computed by summing
the approximation errors at each layer, as shown in the following theorem.

Theorem 3 (Total approximation error (Grasedyck, 2010, Lemma 3.10)) Given an
N -batch of d-dimensional tensors Y ∈ Rn1×···×nd×N , the approximation error of the recon-

structed batch hierarchical Tucker decomposition Ỹ is upper bounded by
∑p

ℓ=0

∑|Tℓ|
i=1 ∥Eℓ,i∥2F ,

∥Y − Ỹ∥2F ≤
p∑

ℓ=0

|Tℓ|∑
i=1

∥Eℓ,i∥2F , (26)

where p is the depth of the dimension tree T.

32

Incremental Hierarchical Tucker

Proof This is a direct generalization of Theorem 2 to the entire dimension tree T. Once
an upper bound on the approximation error at each layer is established, the total approxi-
mation error can be computed by summing the approximation errors at each layer.

This next corollary provides a direct application of how the approximation error can be
distributed over the individual cores of the hierarchical tensor network.

Corollary 4 (BHT-l2r approximation error) Let Y ∈ Rn1×···×nd×N be an N -batch of
d-dimensional tensors and HY be its approximation in batch HT format computed with
Algorithm 1 with an absolute error tolerance εabs, cores G, and dimension tree T. Then,
the reconstruction of this approximation using eq. (6), Ỹ, satisfies ∥Y − Ỹ∥F ≤ εabs if a
nodewise error tolerance εnw is chosen such that

εnw =
εabs√
2d− 2

. (27)

Proof The proof follows from Theorem 3. If we set ∥Eℓ,i∥ ≤ εnw for all ℓ and i, then using
(26) the expression for the overall approximation error becomes

∥Y − Ỹ∥2F ≤
p∑

ℓ=0

|Tℓ|∑
i=1

ε2nw. (28)

Since εnw is assumed constant for all layers and nodes, the double sum on the right-hand
side is simply repeated 2d− 2 times, making the expression

∥Y − Ỹ∥2F ≤ (2d− 2)ε2nw.

Setting εnw = εabs/
√
2d− 2 and taking the square root of both sides yields (26) and there-

fore completes the proof.

Once we can guarantee an approximation error upper bound to BHT-l2r, a next natural
step is to compute the exact approximation error of incurred by the BHT-l2r algorithm.
We use Equation (13) as a proxy for the approximation error. In the following claim we
will prove that the relative error of the approximation can be computed directly from the
Frobenius norms of the original tensor and its projected latent space representation.

Claim 1 (Orthogonal reconstructions) Given an Nk-batch of d-dimensional tensors

Yk ∈ Rn1×···×nd×Nk
, an accumulation of d-dimensional tensors in batch HT format HXk−1,

the projection of Yk onto the HT-cores C̄k1 ∈ Rr1,1×r1,2×Nk
, and the reconstruction of Yk

from C̄k1 using the HT-cores Ỹk, the error of approximation is equal to the difference in
squared Frobenius norm of Ỹk and C̄k1 , i.e,

∥Yk − Ỹk∥F =
√
∥Yk∥2F − ∥C̄k1∥2F .

Proof The proof is direct and has two steps. First we will show that ∥Yk − Ỹk∥2F =
∥Yk∥2F − ∥Ỹk∥2F and then we will show that ∥Ỹk∥2F = ∥C̄k1∥2F .

33

Aksoy and Gorodetsky

First, we take the square of the approximation error to get ∥Yk − Ỹk∥2F . Then, by
using ∥A+B∥2F = ∥A∥2F + ∥B∥2F +2⟨A,B⟩F we expand the squared Frobenius norm of the
approximation error as

∥Yk − Ỹk∥2F = ∥Yk∥2F − 2⟨Yk, Ỹk⟩F + ∥Ỹk∥2F

Without loss of generality, we can split Y into Yk = Yk
∥ + Yk

⊥, where Yk
∥ is the projection

of Yk onto the HT-cores Gk−1 and Yk
⊥ is the orthogonal component of Yk

∥ with respect to

the HT-cores of the accumulation X k−1
H . Then, using the properties of the Frobenius inner

product we can write ⟨Yk, Ỹk⟩F = ⟨Yk
∥ , Ỹk⟩F + ⟨Yk

⊥, Ỹk⟩F . Since Ỹk is the reconstruction

of C̄k1 using the HT-cores, the first term is equal to the squared Frobenius norm of Ỹk. The
second term is zero since Yk

⊥ is by definition orthogonal to Ỹk. Therefore, we can write the
squared Frobenius norm of the approximation error as

∥Yk − Ỹk∥2F = ∥Yk∥2F − ∥Ỹk∥2F

and complete the first part of the proof.

For the second part, we need to show that ∥Ỹk∥2F = ∥C̄k1∥2F . The reconstruction of Ỹk

from C̄k1 is done by performing a sequence of outer products with the HT-cores Gk−1. For
the first layer of HT-cores, the outer product that yields the intermediate core for the i-th
tensor in the Nk-batch, C̃k2 (:, :, :, :, i)5, can be shown as a reshaping of

r1,1,r1,2∑
p,q=1

C̄k1 (p, q, i)Gk−1
1,1 (:, :, p)⊗ Gk−1

1,2 (:, :, q),

where ⊗ denotes the Kronecker product. Note that Gtℓ,j(:, :, i) is an orthonormal matrix
for all t, ℓ, j, i if it is obtained through bht-l2r or HT-RISE. For Kronecker products, we
have ∥A ⊗ B∥ = ∥A∥∥B∥ for any induced norm, therefore we have ∥C̃k2 (:, :, :, :, i)∥2F =
∥C̄k1 (p, q, i)Gk−1

1,1 (:, :, p)⊗ Gk−1
1,2 (:, :, q)∥2F = ∥C̄k1 (p, q, i)∥2F and ∥C̃k2∥2F = ∥C̄k1∥2F .

Since the orthonormality of Gk−1
ℓ,j (:, :, i) holds for all t, ℓ, j, i, the same argument can

be applied to all layers of the HT-cores. Therefore, the squared Frobenius norm of the
reconstruction is equal to the squared Frobenius norm of the projection, i.e., ∥Ỹk∥2F =
∥C̄k1∥2F . This completes the proof.

Claim 1 also applies to the HT-RISE algorithm, as the reconstruction of the streamed tensor
from the hierarchical Tucker approximation is done in the same way as in BHT-l2r, using
orthonormal cores.

Finally with then next theorem we provide a proof of correctness for the HT-RISE algo-
rithm.

Theorem 5 (HT-RISE approximation error)

Proof The proof uses Theorem 3 and is direct. Let C̄kℓ (for any ℓ = p, . . . , 1 and C̄p = Yk)
be the intermediate tensor obtained at the ℓ-th layer while processing the streamed tensor

5. A(:, :, :, :, i) refers to the i-th mode-5 slice for the 5-dimensional tensor A

34

Incremental Hierarchical Tucker

Yk by HT-RISE. After updating Gk−1
ℓ,j to Gkℓ,j using C̄kℓ and Equations (14) to (16), we can

write C̄kℓ as
C̄k
ℓ,(j) = Uk−1

ℓ,j (Uk−1
ℓ,j)T C̄k

ℓ,(j) + Uk
Rℓ,j

Σk
Rℓ,j

(V k
Rℓ,j

)T + ERℓ,j
, (29)

where Uk−1
ℓ,j is the reshaped core Gk−1

ℓ,j . The first term on the RHS is the part of C̄kℓ that is

already represented in X k−1
H , and the second term is the part represented due to the added

basis vectors Uk
Rℓ,j

. If we consider the updated core Uk
ℓ,j =

[
Uk−1
ℓ,j Uk

Rℓ,j

]
, we then can

manipulate (29) to resemble Theorem 2 as

C̄k
ℓ,(j) = Uk

ℓ,j(U
k
ℓ,j)

T C̄k
ℓ,(j) + ERℓ,j

= Uk
ℓ,jΣ

k
ℓ,j(V

k
ℓ,j)

T + ERℓ,j
,

where the error in the approximation of C̄kℓ is given by Eℓ,j . This allows us to compute
an upper bound on the error incurred for each HT-core on the ℓ-th layer using Theorem 2
and accumulate the layerwise approximation upper bounds to obtain a total approximation
error using Theorem 3.

Since we have shown that we can guarantee an upper bound on the approximation error
of the HT-RISE algorithm, now the last step is to show that the updates performed by
HT-RISE do not affect the representation of the tensors that were streamed in the past.
This is shown in the following theorem.

Theorem 6 (Error guarantees for the past stream) Let X k
m ∈ Rn1×···×nd be the m-th

tensor in the accumulation X k at time k, and HXk be the hierarchical Tucker approximation
computed using Algorithm 2 (HT-RISE) with cores Gkℓ,j. For any t ≥ k, the reconstruction

of the m-th tensor from HX t
m
, denoted X̃ t

m, equals the reconstruction from HXk
m
, i.e., X̃ k

m =

X̃ t
m.

Proof The proof simply demonstrates that the core modifications performed by HT-RISE have
no impact on the representation of earlier tensors and is similar to (Aksoy et al., 2024a,

Theorem 4). To demonstrate X̃ k
m = X̃ t

m, we need to reconstruct HX t
m
. Let C̄k,m

1 ∈ Rrk1,1×rk1,2

be the slice of the root core C̄k1 that corresponds to X k
m. For any t > k, C̄k,m

1 gets padded
with zeros according to Equation (17) and becomes

C̄t,m
1 =

[
C̄k,m
1 0
0 0

]
, (30)

with shape rt1,1 × rt1,2.

Since the reconstruction happens in the root-to-leaf direction, we use the C̄t,m
1 from (30)

and contract with the HT-cores on the first level as C̃t,m1 = C̄t,m
1 1×3 Gt1,1 3×3 Gt1,2. As a

result, we obtain C̃t,m1 ∈ Rrt2,1×rt2,2×rt2,3×rt2,4 is the intermediate core of layer 1. After the
contraction, we compute the (i1, i2, i3, i4)-th element of C̃t,m1 as

C̃t,m1 (i1, i2, i3, i4) =

rt1,1∑
α=1

rt1,2∑
β=1

C̄t,m
1 (α, β)Gt1,1(i1, i2, α)Gt1,2(i3, i4, β). (31)

35

Aksoy and Gorodetsky

However, since C̄t,m
1 (α, β) = 0 ∀α > rk1,1, β > rk1,2, we can rewrite Equation (31) as

C̃t,m1 (i1, i2, i3, i4) =

rk1,1∑
α=1

rk1,2∑
β=1

C̄k,m
1 (α, β)Gt1,1(i1, i2, α)Gt1,2(i3, i4, β).

Next, we consider the padding of the contracted cores. Since cores on layer ℓ are padded
with zeros to ensure dimensional consistency after updating layer ℓ+1 as in Equation (17),
the entries of Gt1,1(i1, i2, : rk1,1) and Gt1,2(i3, i4, : rk1,2) are all zero for any ij > rk2,j , where

Gtℓ,j(α, β, : rkℓ,j) is the mode-3 fiber of Gtℓ,j at position (α, β) with depth rkℓ,j . Therefore,

C̃t,m1 (i1, i2, i3, i4) = 0 for any ij > rk2,j . For a full dimension tree this results in

C̃t,m2 (i1, . . . , i8) =

rt2,1∑
α=1

rt2,2∑
β=1

rt2,3∑
γ=1

rt2,4∑
θ=1

C̃t,m1 (α, β, γ, θ)Gt2,1(i1, i2, α) · · · Gt4,1(i7, i8, α),

=

rk2,1∑
α=1

rk2,2∑
β=1

rk2,3∑
γ=1

rk2,4∑
θ=1

C̃k,m1 (α, β, γ, θ)Gt2,1(i1, i2, α) · · · Gt4,1(i7, i8, α).

(32)

for the second layer. This process is repeated for layers ℓ = 3, . . . , p− 1. Then for the last
layer p, the reconstruction is performed as

X̃ t
m = C̃t,mp (i1, . . . , id) =

rtp,1∑
α=1

· · ·
rtp,d∑
ζ=1

C̃t,mp−1(α, . . . , ζ)Gtp,1(i1, α) · · · Gtp,d(id, ζ),

=

rkp,1∑
α=1

· · ·
rkp,d∑
ζ=1

C̃k,mp−1(α, . . . , ζ)Gtp,1(i1, α) · · · Gtp,d(id, ζ).

(33)

Equations (31) to (33) all use the ranks up to rkℓ,j while reconstructing X̃ t
m. This shows

that for any t ≥ k, the reconstruction of the m-th tensor in the accumulation HX t is the
same as the reconstruction of the m-th tensor in the accumulation HXk . Therefore, the
error guarantees of the HT-RISE algorithm are preserved for the past stream.

Appendix B. Supplementary Algorithms

This section contains pseudocodes for the supplementary algorithms that are used in Algo-
rithms 1 and 2.

• updateIndexSet: During the update process with HT-RISE (Algorithm 2), it is impor-
tant to keep track of the added basis vectors to each core. To ensure dimensional con-
sistency throughout the update process, the updateIndexSet function (algorithm B.1)
updates the index sets corresponding to layers and nodes.

• expandCore: Once the missing basis vectors of a core are identified, then the next step
is to merge the missing basis vectors with the existing ones stored in a Tucker core.

36

Incremental Hierarchical Tucker

Algorithm B.1 updateIndexSet: Updates the index set of a given object

1: Input
2: IΓα index set of the object Γ
3: Γα object to update the index set

4: Output
5: IΓα updated index set

6: if Γα is a node then ▷ α is a tuple with layer and node indices
7: ℓ, j ← α

8: IΓα
←

{ndℓ,j

, rℓ,j} if Γα is a leaf ⋃
(ℓ+1,p)∈Sℓ,i

rℓ+1,p

 ∪ {rℓ,i} if Γα is a transfer node.

9: else if Γ is a layer then ▷ α is the layer index

10: IΓα
← ⋃|Γα|

j=1

ndα,j

if Γα,j is a leaf∏
(α+1,m)∈Sα,j

rα+1,m if Γα,j is a transfer node. ▷ Γα,j is the j-th node on

layer α
11: end if

The expandCore (Algorithm B.2) algorithm takes in a node, along with its dimension
tree, existing Tucker core and the new basis vectors corresponding to that node and
updates the core.

• padWithZeros: The padWithZeros algorithm is used to pad a Tucker core with zeros
to ensure dimensional consistency after updating the core. The algorithm is presented
in Algorithm B.3.

Appendix C. Alternative approach to determine an upper bound to the
approximation error ∥Eℓ,j∥F

In this section, we propose an alternative method to determine an upper bound to the
approximation error ∥Eℓ,j∥F for BHT-l2r and HT-RISE algorithms.

Since all the operations in both algorithms are projections onto truncated orthogonal
bases, we can compute the error of approximation directly by comparing the norm of an
intermediate tensor Cℓ to the original d-dimensional tensor Y. This allows us to update the
nodewise error tolerance εnw adaptively throughout both algorithms. Let εabs be the deter-
mined absolute error tolerance for the hierarchical Tucker approximation. Both BHT-l2r

and HT-RISE will perform (2d − 2) SVDs to either compute a hierarchical Tucker represen-
tation or update an existing one. At the beginning of both algorithms, the nodewise error
tolerance εnw is set to εabs/

√
2d− 2.

Once the computation of the ℓ-th layer is complete and Y is projected onto Gℓ,j , we can
track the current error of approximation. Let C̄ℓ be that approximation. Then, the current
error of approximation is then computed as

εℓ =
√
∥Y∥2F − ∥C̄ℓ∥2F , (34)

37

Aksoy and Gorodetsky

Algorithm B.2 expandCore: Expands the basis of a Tucker core

Input
Nℓ,j node whose core is to be expanded
INℓ,j

index set of the node
Gℓ,j core to be expanded
U rU orthogonal vectors to be appended to Gℓ,j

Output
Gℓ,j updated core
INℓ,j

updated index set

if Nℓ,j is a leaf node then

Gℓ,j ←
[
Gℓ,j U

]
▷ Gℓ,j is already in orthonormal matrix form, we can directly append U to

Gℓ,j
INℓ,j

← updateIndexSet(INℓ,j
,Nℓ,j) ▷ Update the index set of the node to reflect the new

rank
else if Nℓ,j is a transfer node then

α← 1
rℓ,j

∏
γ∈INℓ,j

γ

Gℓ,j ← reshape(Gℓ,j , [α, rℓ,j]) ▷ Gℓ,j is reshaped to an orthonormal matrix before appending
U
Gℓ,j ←

[
Gℓ,j U

]
INℓ,j

← updateIndexSet(INℓ,j
,Nℓ,j) ▷ Update the index set of the node to reflect the new

rank
Gℓ,j ← reshape(Gℓ,j , INℓ,j

) ▷ Fold Gℓ,j back to 3D core
end if

Algorithm B.3 padWithZeros: Pad a hierarchical Tucker core with zeros

1: Input
2: Gℓ,j ∈ Rα×β×r HT-core to be padded
3: t index of the node to be padded among the children of its

parent node
4: r′ size of the zeros to be padded

5: Output
6: Gℓ,j padded HT-core

7: 0 ∈ Rr′×β×r ▷ Assume t = 1 for simplicity
8: Gℓ,j ← Gℓ,j ⊕t 0 ▷ Gℓ,j ∈ R(α+r′×β×r)

where εℓ denotes the error of approximation at the ℓ-th layer. To update the nodewise error
tolerance εnw for the upcoming computations, we define an error budget εrem as

εrem =
√
ε2abs − ε2ℓ . (35)

In addition to updating the remaining error budget, we also update the nodewise error
tolerance εnw accordingly as

εnw =
εrem√
svdrem

, (36)

with svdrem being the number of remaining SVDs to be performed.

38

Incremental Hierarchical Tucker

This approach aims to compensate for the actual error of approximation incurred at
each layer being lower than the desired approximation error as shown in Theorem 4 and
Theorem 5. By updating the nodewise error tolerance εnw adaptively, we can get progres-
sively more aggressive in the truncation of the Tucker cores as we move up the dimension
tree. This approach is particularly useful when the original tensor Y is comprised of many
small dimensions.

Appendix D. Additional results

This section contains the additional results for the experiments conducted in Section 4. In
addition to those, this section further presents the comparison of the batch hierarchical
Tucker format and the hierarchical Tucker format.

D.1 Comparison of the batch hierarchical Tucker format and the hierarchical
Tucker format

This section considers the comparison of the batch hierarchical Tucker format and the
hierarchical Tucker format. We compute the approximations in batch hierarchical Tucker
format (Figure 3d) using the BHT-l2r algorithm (Algorithm 1) and the hierarchical Tucker
format (Figure 3c) using the leaf-to-root compression algorithm of Grasedyck (2010, Alg. 2).
We ran all algorithms until they run out of the allocated 64GB memory. Please note
that in the experiments in this section do not include any incremental updates as the
algorithms compared here are both one-shot algorithms. At every batch size, we compute
the compression using the respective formats and algorithms from scratch.

We conduct our experiments using the PDEBench dataset with εrel = 0.10 and 0.05 as
well as the BigEarthNet dataset with εrel = 0.05, 0.10, 0.15, and 0.30 with the same re-
shapings as in Section 4. For all scenarios, we compare compression ratio and compression
time of both algorithms. Analogous to other experiments, the results are averaged over
5 seeds. When computed with BHT-l2r, our proposed batch hierarchical Tucker format
results in a significant reduction in compression time in comparison to the regular hierar-
chical Tucker format computed with the leaves-to-root decomposition algorithm presented
in Grasedyck (2010, Alg. 2) while returning better compression ratios. Figures D.1 and D.2,
and Figure D.3 show the results for the PDEBench and BigEarthNet datasets, respectively.

Figure D.1 shows the results of the comparison between HT format and BHT format in
CR and compression time for εrel = 0.10. Note that the batch hierarchical Tucker format
achieves higher compression in comparison to their hierarchical Tucker format version using
the same normalization. At this target relative error level, both algorithms compress the
same amount of simulations except for HT format with z-score normalization. Another
intersting observation from Figure D.1 is that the BHT format results in faster compression
irrespective of the normalization method used.

Figure D.2 shows the results of the comparison between HT format and BHT format
in CR and compression time for εrel = 0.05. Note that similar to the case of εrel = 0.10,
the BHT format offers higher compression and lower compression time compared to the
HT format. This time, the efficiency difference between BHT and HT manifests itself in
the compression of more simulations. The BHT format compresses at least 6 simulations
more than the HT format across all normalization methods. In parallel to the results of

39

Aksoy and Gorodetsky

10 20 30 40 50
Number of training simulations

0

10

20

30

40

50

C
om

pr
es

si
on

 R
at

io

10 20 30 40 50
Number of training simulations

0

200

400

600

800

1000

1200

1400

C
om

pr
es

si
on

 T
im

e

HT (MaxAbs)
HT (None)

HT (UnitVec.)
HT (Z-Score)

BHT (MaxAbs)
BHT (None)

BHT (UnitVec.)
BHT (Z-Score)

Figure D.1: Comparison of hierarchical Tucker leaf-to-root compression and batch hierarchical
Tucker decomposition in terms of compression ratio (CR - left) and compression time (right) on
the PDEBench 3D Navier-Stokes dataset with εrel = 0.10 using various normalization methods. For
the same normalization methods, the batch hierarchical Tucker format achieves on average 1.5×
compression over the hierarchical Tucker format, while running on average 1.7× faster. The batch
hierarchical Tucker format compresses 12 simulations more than the hierarchical Tucker format us-
ing z-score normalization. All experiments are run until failure due to insufficient memory. MaxAbs:
Maximum absolute value normalization, None: No normalization, UnitVec: Unit vector normaliza-
tion, ZScore: Z-score normalization. The results are averaged over 5 seeds.

40

Incremental Hierarchical Tucker

εrel = 0.10, the BHT format results in faster compression irrespective of the normalization
method used.

10 20 30 40 50
Number of training simulations

2

4

6

8

10

12

14

C
om

pr
es

si
on

 R
at

io

10 20 30 40 50
Number of training simulations

0

200

400

600

800

1000

1200

1400

1600

C
om

pr
es

si
on

 T
im

e

HT (MaxAbs)
HT (None)

HT (UnitVec.)
HT (Z-Score)

BHT (MaxAbs)
BHT (None)

BHT (UnitVec.)
BHT (Z-Score)

Figure D.2: Comparison of HT format and BHT format in terms of compression ratio (CR - left)
and compression time (right) on the PDEBench 3D Navier-Stokes dataset with εrel = 0.05 using
various normalization methods. For the same normalization methods, the BHT format achieves 1.4−
1.6× compression over the HT format, while running 1.6−1.9× faster. The BHT format compresses
at least 6 simulations more than the HT format at all normalization methods. All experiments are
run until failure due to insufficient memory. Please refer to the caption of Figure D.1 for the
normalization methods.

In addition to the 3D Navier-Stokes simualtions, we also conduct experiments on the
BigEarthNet dataset. Figure D.3 shows the results of the comparison between HT format
and BHT format in CR and compression time for the BigEarthNet dataset. In line with our
findings from the PDEBench dataset, the BHT format offers higher compression and lower
compression time compared to the HT format, specifically at higher target relative error
levels. At the higher target relative error level, εrel = 0.30, the BHT format achieves 6.2×
compression over the HT format. The difference between HT and BHT formats become
less pronounced as the target relative error level decreases. At εrel = 0.15, the BHT
format achieves only 1.5× compression over the HT format. At the lower target relative
error level, εrel = 0.10, both formats yield comparable CRs with the HT format achieving
1.05× compression over the BHT format. Finally at εrel = 0.05, the HT format achieves
1.3× compression over the BHT format. In terms of compression time, the BHT format
consistently outperforms the HT format. Over the target relative errors investigated, the
BHT format runs 1.86− 3.86× faster than the HT format.

One interesting observation from Figure D.3 is that despite the higher compression ratios
achieved by the BHT format, the HT format compresses more images than the BHT format
at εrel = 0.30 and εrel = 0.15. The BHT format compresses 700 images less than the HT
format at εrel = 0.30 and 100 images less than the HT format at εrel = 0.15. However, once
the HT format surpasses the BHT format in terms of CR, the BHT format compresses more

41

Aksoy and Gorodetsky

images. The BHT format compresses 100 images more than the HT format at εrel = 0.10
and 500 images more than the HT format at εrel = 0.05.

0 2000 4000 6000 8000
Number of images

100

101

102

103

104

C
om

pr
es

si
on

 R
at

io

0 2000 4000 6000 8000
Number of images

0

200

400

600

800

C
om

pr
es

si
on

 T
im

e

HT (0.05)
BHT (0.05)

HT (0.10)
BHT (0.10)

HT (0.15)
BHT (0.15)

HT (0.30)
BHT (0.30)

Figure D.3: Comparison of hierarchical Tucker format and batch hierarchical Tucker format in
terms of compression ratio (CR - left) and compression time (right) on the BigEarthNet dataset with
εrel = 0.05 − 0.30. The BHT format achieves 6.2× compression over the HT format at εrel = 0.3
while running 3.75× faster. At εrel = 0.1, the BHT format achieves 0.95× compression over the HT
format while running 2.69× faster. The BHT format compresses 100 images more and 700 images
less than HT format at εrel = 0.1 and εrel = 0.3, respectively. All experiments are run until failure
due to insufficient memory.

D.2 Effect of the reshaping on compression performance

This section investigates the effect of reshaping on the compression performance of the
HT-RISE algorithm. We consider the PDEBench 3D turbulent Navier-Stokes dataset with
εrel = 0.10 and no normalization. We consider four different reshaping of the tensor.
The baseline reshaping is denoted as 8 × 8 × 8 × 8 × 8 × 8 × 5 × 21 × 1. We alter the
dimensionality by reshaping the tensor. Note that we only change the dimensionality of
the tensor by altering the dimensions that correspond to the spatial discretization of the
simulation. Figure D.4 shows the compression time and relative test error of the algorithms
using various reshaping. Figure D.5 shows the comparison of compression time and RTE
of the algorithms using the considered reshapings. Table D.1 presents the shapes of the
tensors, and the resulting compression time, CR, RR, as well as RTE. For this type of
experiments we set the maximum walltime limit to 4 days, similar to the experiments in
Section 4.2.2

In Figure D.4 we observe that the changing the dimensionality of the tensor has a
significant impact on the CR. The 4× 4× 4× 4× 4× 4× 4× 4× 4× 5× 21× 1 reshaping
results in the highest CR (33.59×) and RR (33.87×) among the investigated reshaping. The
64 × 64 × 64 × 5 × 21 × 1 reshaping results in the lowest CR (18.86×) and the reshaping
2 × 2 × 4 × 2 × 2 × 4 × 2 × 2 × 4 × 2 × 2 × 4 × 2 × 2 × 5 × 21 × 1 results in the lowest

42

Incremental Hierarchical Tucker

Table D.1: Results of experiments investigating the effect of reshaping on the compression per-
formance of the HT-RISE algorithm using the PDEBench 3D turbulent Navier-Stokes dataset with
εrel = 0.10. Time: Compression time in seconds, CR: Compression ratio, RR: Reeduction ratio,
RTE: Relative test error. ‡ denotes that the algorithm failed to compress the dataset due to maxi-
mum walltime limit (389/480 simulations).

Tensor Shape Time(s) CR RR RTE

8× 8× 8× 8× 8× 8× 5× 21× 1 1158.7 32.68 32.94 0.098
64× 64× 64× 5× 21× 1 5289.4‡ 18.86 32.59 0.108
4× 4× 4× 4× 4× 4× 4× 4× 4× 5× 21× 1 3563.5 33.59 33.87 0.098
2× 2× 4× 2× 2× 4× 2× 2× 4× 2× 2× 4× 2× 2× 5× 21× 1 11,339 25.64 28.83 0.099

RR (28.83×). Furthermore, the 64 × 64 × 64 × 5 × 21 × 1 reshaping runs into maximum
walltime timeout and therefore fails to compress the entire dataset.

0 100 200 300 400 500
Number of training simulations

10

15

20

25

30

35

40

C
om

pr
es

si
on

 R
at

io

0 100 200 300 400 500
Number of training simulations

101

102

103

104
R

ed
uc

tio
n

R
at

io
8 × 8 × 8 × 8 × 8
64 × 64 × 64

4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4
2 × 2 × 4 × 2 × 2 × 4 × 2 × 2 × 4 × 2 × 2 × 4 × 2 × 2

Figure D.4: Comparison of various tensor reshapings in terms of compression ratio (CR - left)
and reduction ratio (RR - right) on the PDEBench 3D Navier-Stokes dataset with εrel = 0.10 using
no normalization. The reshaping 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 5 × 21 × 1 results 1.8×
the CR of the worst performing reshaping, 64 × 64 × 64 × 5 × 21 × 1. Similarly, the reshaping
4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 5 × 21 × 1 results in 1.2× of the RR of the worst performing
reshaping, 2× 2× 4× 2× 2× 4× 2× 2× 4× 2× 2× 4× 2× 2× 5× 21× 1.

Figure D.5 shows that the baseline reshaping 8× 8× 8× 8× 8× 8× 5× 21× 1 results in
the lowest compression time among the investigated reshapings (1158.7s). The reshaping
2×2×4×2×2×4×2×2×4×2×2×4×2×2×5×21×1 results in the highest compression
time (11, 339s). The reshaping 64×64×64×5×21×1 runs into maximum walltime timeout
and therefore is not considered in this comparison. However, the growth in compression
time suggests that it would have been the slowest reshaping among the investigated ones if
the entire dataset was successfully compressed.

Another observation from Figure D.5 is that all reshapings result in almost the same
RTE (0.098−0.099) except for 64×64×64×5×21×1 reshaping. The 64×64×64×5×21×1
reshaping results in the highest RTE among the investigated reshapings (0.108). However,

43

Aksoy and Gorodetsky

this is likekly due to the fact that the algorithm fails to compress the entire dataset due
to maximum walltime limit. The effect of the reshaping on the RTE is at the number of
simulations it takes to reduce the RTE below the target εrel. The 4 × 4 × 4 × 4 × 4 × 4 ×
4 × 4 × 4 × 5 × 21 × 1 reshaping crosses the εrel threshold at 12 simulations, whereas the
2× 2× 4× 2× 2× 4× 2× 2× 4× 2× 2× 4× 2× 2× 5× 21× 1 reshaping crosses the εrel
threshold at 127 simulations.

0 100 200 300 400 500
Number of training simulations

100

101

102

103

104

105

C
om

pr
es

si
on

 T
im

e

0 100 200 300 400 500
Number of training simulations

0.0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
Te

st
 E

rr
or

Target = 0.10

8 × 8 × 8 × 8 × 8
64 × 64 × 64

4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4
2 × 2 × 4 × 2 × 2 × 4 × 2 × 2 × 4 × 2 × 2 × 4 × 2 × 2

Figure D.5: Comparison of various tensor reshapings in terms of compression time (left) and
relative test error (RTE - right) on the PDEBench 3D Navier-Stokes dataset with εrel = 0.10 using
no normalization. The reshaping 2× 2× 4× 2× 2× 4× 2× 2× 4× 2× 2× 4× 2× 2× 5× 21× 1
takes 9.8× the time it takes the reshaping 8× 8× 8× 8× 8× 8× 5× 21× 1 to compress the dataset.
All reshapings except for 64× 64× 64× 5× 21× 1 result in almost the same RTE.

D.3 Effect of the axis ordering on compression performance

This section considers an empirical investigation of the effect of axis ordering on the com-
pression performance of the HT-RISE algorithm. As the ordering of the axes determine
the order of interatction between the dimensions, it is expected that the axis ordering has
an effect on the compression performance of the HT-RISE algorithm. We investigate the
effect of axis ordering on the compression performance of the HT-RISE algorithm using the
PDEBench 3D turbulent Navier-Stokes dataset with εrel = 0.10 and no normalization. We
consider four different axis reorderings of the tensor. The baseline axis ordering is denoted
as [0, 1, 2, 3, 4, 5, 6, 7, 8]. The other axis reorderings are obtained by permuting the indices of
the tensor. Figure D.6 shows the compression time and relative test error of the algorithms
using various axis reorderings. Figure D.7 shows the comparison of compression time and
mean validation error of the algorithms using various axis reorderings. Table D.2 presents
the axis ordering, shapes of the corresponding tensors, and the resulting compression time,
CR, RR, as well as RTE.

Figure D.6 shows that the baseline axis ordering results in the highest CR and RR
among the investigated axis reorderings. The baseline axis ordering achieves 32.68× CR
and 32.94× RR, whereas the second best axis ordering, Transpose A, achieves 26.24× CR

44

Incremental Hierarchical Tucker

Table D.2: Results of experiments investigating the effect of axis ordering on the compression
performance of the HT-RISE algorithm using the PDEBench 3D turbulent Navier-Stokes dataset with
εrel = 0.10. Axis orderings are given in the form of a permutation of the indices of the tensor. Two
of the dimensions with magnitude 8 are emphasized to make different axis reorderings distinguishable.
The investigated axis reorderings of the axes result in up to 1.72× higher in compression time, CR
and RR, while yielding almost the same RTE. Time: Compression time in seconds, CR: Compression
ratio, RR: Reeduction ratio, RTE: Relative test error.

Name Axis Ordering Tensor Shape Time(s) CR RR RTE

Baseline [0,1,2,3,4,5,6,7,8] 8× 8× 8× 8× 8× 8× 5× 21× 1 1158.7 32.68 32.94 0.098
Transpose A [0,1,2,7,4,5,6,3,8] 8× 8× 8× 21× 8× 8× 5× 8× 1 1306.7 26.24 26.41 0.098
Transpose B [0,4,2,7,1,5,6,3,8] 8× 8× 8× 21× 8× 8× 5× 8× 1 1928.7 18.93 19.06 0.097
Transpose C [0,1,2,6,4,5,3,7,8] 8× 8× 8× 5× 8× 8× 8× 21× 1 1992.9 25.59 26.21 0.098

and 26.41× RR. CR and RR drop down to 18.93× and 19.06× for the worst performing
axis ordering, Transpose B.

0 100 200 300 400 500
Number of training simulations

10

15

20

25

30

35

40

C
om

pr
es

si
on

 R
at

io

0 100 200 300 400 500
Number of training simulations

101

102

103

R
ed

uc
tio

n
R

at
io

Baseline Transpose A Transpose B Transpose C

Figure D.6: Comparison of various axis orderings in terms of compression ratio (CR - left) and
reduction ratio (RR - right) on the PDEBench 3D Navier-Stokes dataset with εrel = 0.10 using no
normalization. The baseline axis ordering results in the highest CR and RR among the investigated
axis reorderings. Changing the axis ordering of the tensor results in up to 1.72× the CR and RR of
the worst performing axis ordering.

Figure D.7 shows that the baseline axis ordering also results in the lowest compression
time among the investigated axis reorderings. The baseline axis ordering achieves 1158.7
seconds of compression time, whereas the second best axis ordering, Transpose A, results
in 1306.7 seconds of compression time. Compression time increases up to 1992.9 seconds
for worst performing axis ordering, Transpose C. In terms of RTE, all axis reorderings yield
almost the same RTE around 0.098.

D.4 Additional PDEBench results

This section presents the detailed results discussed in Section 4.2.2. Similar to Table 3,
we present experiments on the PDEBench 3D turbulent Navier-Stokes simulations with

45

Aksoy and Gorodetsky

0 100 200 300 400 500
Number of training simulations

101

102

103

104

C
om

pr
es

si
on

 T
im

e

0 100 200 300 400 500
Number of training simulations

0.0

0.1

0.2

0.3

0.4

R
el

at
iv

e
Te

st
 E

rr
or

Target = 0.10

Baseline Transpose A Transpose B Transpose C

Figure D.7: Comparison of various axis orderings in terms of compression time (left) and relative
test error (RTE - right) on the PDEBench 3D Navier-Stokes dataset with εrel = 0.10 using no nor-
malization. The baseline axis ordering results in the lowest compression time among the investigated
axis reorderings. Changing the axis ordering of the tensor results in up to 1.72× the compression
time of best performing axis ordering. All axis reorderings result in almost the same RTE.

εrel = 0.10 and εrel = 0.05. In contrast to Section 4.2.2, here we provide results for all
normalization methods used in the experiments. Figures D.8 and D.9 show the results for
experiments with εrel = 0.10 and Figures D.10 and D.11 show the results for experiments
with εrel = 0.10 and εrel = 0.05.

0 100 200 300 400 500
Number of training simulations

0

5

10

15

20

25

30

35

C
om

pr
es

si
on

 R
at

io

0 100 200 300 400 500
Number of training simulations

100

102

104

106

108

R
ed

uc
tio

n
R

at
io

HIT (MaxAbs)
HIT (None)

HIT (UnitVec.)
HIT (Z-Score)

TT-ICE* (MaxAbs)
TT-ICE* (None)

TT-ICE* (UnitVec.)
TT-ICE* (Z-Score)

Figure D.8: Compression time (left) and Relative Test Error (right) of the algorithms on the
PDEBench 3D turbulent Navier-Stokes dataset with εrel = 0.10 and using various normalization
methods. TT-ICE∗ offers orders of magnitude higher reduction ratio while yielding less compression
ratio compared to HT-RISE. All experiments with TT-ICE∗ terminates prematurely due to timeout.
MaxAbs: Maximum absolute value normalization, None: No normalization, UnitVec: Unit vector
normalization, ZScore: Z-score normalization. The results are averaged over 5 seeds.

46

Incremental Hierarchical Tucker

In parallel to the findings in Figure 8, Figure D.8 shows that HT-RISE results in higher
compression ratio but multiple orders of magnitude lower reduction ratio against TT-ICE∗.
This discrepancy is caused by the fact that the maximum size of the latent space is upper
bounded by the number of tensors in the accumulation for TT-ICE∗. This limitation also
results in the high RTE for TT-ICE∗ as it struggles to reduce the approximation error on
the test set anywhere near the target εrel in Figure D.9. On the other hand, HT-RISE is
able to reduce the RTE below the target εrel error within a handful of training simulations
across all normalization methods. As a result, HT-RISE achieves faster compression time
across all normalization methods due to the less updates required to reach the target εrel
error.

0 100 200 300 400 500
Number of training simulations

100

101

102

103

104

C
om

pr
es

si
on

 T
im

e

0 100 200 300 400 500
Number of training simulations

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Te

st
 E

rr
or

Target = 0.10

HIT (MaxAbs)
HIT (None)

HIT (UnitVec.)
HIT (Z-Score)

TT-ICE* (MaxAbs)
TT-ICE* (None)

TT-ICE* (UnitVec.)
TT-ICE* (Z-Score)

Figure D.9: Comparison of compression time and mean validation error of algorithms using the
PDEBench 3D Navier-Stokes dataset with εrel = 0.10 and using various normalization methods.
TT-ICE∗ fails to reduce the approximation error on the test set whereas HT-RISEachieves below εrel
error within a handful of training simulations. This results in less updates to HT-RISEand therefore
less compression time. All experiments with TT-ICE∗ terminates prematurely due to timeout. Please
refer to the legend of Figure D.8 for the normalization methods. The results are averaged over 5
seeds.

A similar trend is observed in Figure D.10 and Figure D.11 for the experiments with
εrel = 0.05. TT-ICE∗ offers orders of magnitude higher reduction ratio while yielding less
compression ratio compared to HT-RISE. Similarly, TT-ICE∗ fails to reduce the approxima-
tion error on the test set whereas HT-RISE achieves below εrel error within a handful of
training simulations. This issue becomes a serious bottleneck as TT-ICE∗ hardly compresses
200 simulations out of 480 during the allocated 4-day maximum walltime. On the other
hand, HT-RISE only fails at z-score normalization due to insufficient memory.

D.5 Additional self-oscillating-gel simulations results

This section presents the detailed results discussed in Section 4.2.1. Similar to Table 2,
we present experiments on the self oscillating gel simulations with εrel = 0.10 and εrel =
0.01. However, in this section we provide results for z-score normalization and unit vector

47

Aksoy and Gorodetsky

0 100 200 300 400 500
Number of training simulations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

C
om

pr
es

si
on

 R
at

io

0 100 200 300 400 500
Number of training simulations

100

102

104

106

108

R
ed

uc
tio

n
R

at
io

HIT (MaxAbs)
HIT (None)

HIT (UnitVec.)
HIT (Z-Score)

TT-ICE* (MaxAbs)
TT-ICE* (None)

TT-ICE* (UnitVec.)
TT-ICE* (Z-Score)

Figure D.10: Compression time (left) and Relative Test Error (right) of the algorithms on the
PDEBench 3D turbulent Navier-Stokes dataset with εrel = 0.05 and using various normalization
methods. TT-ICE∗ offers orders of magnitude higher reduction ratio while yielding less compression
ratio compared to HT-RISE. All experiments with TT-ICE∗ terminates prematurely due to timeout.
HT-RISE only fails at z-score normalization due to insufficient memory. Please refer to the legend
of Figure D.8 for the normalization methods. The results are averaged over 5 seeds.

0 100 200 300 400 500
Number of training simulations

100

101

102

103

104

C
om

pr
es

si
on

 T
im

e

0 100 200 300 400 500
Number of training simulations

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Te

st
 E

rr
or

Target = 0.05

HIT (MaxAbs)
HIT (None)

HIT (UnitVec.)
HIT (Z-Score)

TT-ICE* (MaxAbs)
TT-ICE* (None)

TT-ICE* (UnitVec.)
TT-ICE* (Z-Score)

Figure D.11: Comparison of compression time (left) and Relative Test Error (right) of algorithms
using the PDEBench 3D Navier-Stokes dataset with εrel = 0.05 and using various normalization
methods. TT-ICE∗ fails to reduce the approximation error on the test set whereas HT-RISEachieves
below εrel error within a handful of training simulations. This results in less updates to HT-RISEand
therefore less compression time. All experiments with TT-ICE∗ terminates prematurely due to time-
out. HT-RISE only fails at z-score normalization due to insufficient memory. Please refer to the
legend of Figure D.8 for the normalization methods. The results are averaged over 5 seeds.

48

Incremental Hierarchical Tucker

normalization in addition to experiments without any normalization. Figures D.12 and D.13
show the results for experiments with εrel = 0.10 and Figures D.14 and D.15 show the results
for experiments with εrel = 0.01.

Figure D.12 shows the compression ratio and reduction ratio of the algorithms on the
self-oscillating gel dataset with εrel = 0.10 and using all investigated normalization methods.
At this target relative error level, both algorithms successfully complete the compression
task for all normalization methods. TT-ICE∗ offers 3.3 − 3.5× the CR, and 4.6 − 6.3× the
RR of HT-RISE.

0 2000 4000 6000 8000
Number of training simulations

0

500

1000

1500

2000

2500

3000

C
om

pr
es

si
on

 R
at

io

0 2000 4000 6000 8000
Number of training simulations

102

103

104

105

R
ed

uc
tio

n
R

at
io

HT-RISE (None)
HT-RISE (UnitVec.)

HT-RISE (Z-Score)
TT-ICE* (None)

TT-ICE* (UnitVec.)
TT-ICE* (Z-Score)

Figure D.12: Compression ratio (CR - left) and Reduction ratio (RR - right) of the algorithms on
the self-oscillating gel dataset with εrel = 0.10 and using various normalization methods. TT-ICE∗

offers orders of magnitude higher reduction ratio while yielding less compression ratio compared to
HT-RISE. All experiments with TT-ICE∗ terminates prematurely due to timeout. MaxAbs: Maximum
absolute value normalization, None: No normalization, UnitVec: Unit vector normalization, ZScore:
Z-score normalization. The results are averaged over 5 seeds.

Figure D.13 shows the compression time and relative test error of the algorithms on
the self-oscillating gel dataset with εrel = 0.10 with all investigated normalization methods.
Both methods were able to reduce the approximation error below the target εrel threshold
for all normalziation methods within similar number of training simulations. Due to the low
dimensionality of the problem, TT-ICE∗ resulted in a lower compression time. HT-RISE takes
2.9− 5.4× the time it takes for TT-ICE∗ to compress the dataset.

Figure D.14 shows the compression ratio and reduction ratio of the algorithms on the
self-oscillating gel dataset with εrel = 0.01 and using all investigated normalization methods.
As the target relative error level becomes tighter, the compression ratio and reduction ratio
of the algorithms decrease significantly. Furthermore, TT-ICE∗ runs into timeout for unit
vector and z-score normalizations. In contrast to that, HT-RISE completes the compression
task for all normalization methods without running into any issues. For all normalization
methods TT-ICE∗ offers 2.5− 6.6× the CR of HT-RISE and 9.5− 21.8× the RR of HT-RISE.

Figure D.15 shows the compression time and relative test error of the algorithms on the
self-oscillating gel dataset with εrel = 0.01 and using all investigated normalization methods.
Both methods were able to reduce the approximation error below the target εrel threshold

49

Aksoy and Gorodetsky

0 2000 4000 6000 8000
Number of training simulations

10 2

10 1

100

101

102

103

C
om

pr
es

si
on

 T
im

e

0 2000 4000 6000 8000
Number of training simulations

10 2

10 1

100

R
el

at
iv

e
Te

st
 E

rr
or

Target = 0.10

HT-RISE (None)
HT-RISE (UnitVec.)

HT-RISE (Z-Score)
TT-ICE* (None)

TT-ICE* (UnitVec.)
TT-ICE* (Z-Score)

Figure D.13: Compression time (left) and Relative Test Error (right) of the algorithms on the
self-oscillating gel dataset with εrel = 0.10 and using various normalization methods. TT-ICE∗

offers orders of magnitude higher reduction ratio while yielding less compression ratio compared to
HT-RISE. All experiments with TT-ICE∗ terminates prematurely due to timeout. Please refer to the
caption of Figure D.12 for normalization methods. The results are averaged over 5 seeds.

0 2000 4000 6000 8000
Number of training simulations

0

25

50

75

100

125

150

C
om

pr
es

si
on

 R
at

io

0 2000 4000 6000 8000
Number of training simulations

101

102

103

104

105

R
ed

uc
tio

n
R

at
io

HT-RISE (None)
HT-RISE (UnitVec.)

HT-RISE (Z-Score)
TT-ICE* (None)

TT-ICE* (UnitVec.)
TT-ICE* (Z-Score)

Figure D.14: Compression ratio (CR - left) and reduction ratio (RR - right) of the algorithms on
the self-oscillating gel dataset with εrel = 0.01 and using various normalization methods. None: No
normalization, UnitVec: Unit vector normalization, ZScore: Z-score normalization. TT-ICE∗ offers
an order of magnitude higher reduction ratio while yielding comparable compression ratio compared
to HT-RISE.

50

Incremental Hierarchical Tucker

when no normalization is employed. In addition to that, HT-RISE was able to cross the
target εrel line with z-score normalization as well. It is not fair to compare the methods in
terms of total compression time as TT-ICE∗ fails to compress the entire dataset due to the
maximum walltime limit at two of the normalization methods. However, it is worth noting
that in Figure D.15 TT-ICE∗ runs faster than HT-RISE for all normalization methods for
same number of simulations. Note that only HT-RISE with z-score normalization can cross
the target εrel line in addition to the cases with no normalization.

0 2000 4000 6000 8000
Number of training simulations

10 3

10 2

10 1

100

101

102

103

104

C
om

pr
es

si
on

 T
im

e

0 2000 4000 6000 8000
Number of training simulations

10 3

10 2

10 1

100

R
el

at
iv

e
Te

st
 E

rr
or

Target = 0.01

HT-RISE (None)
HT-RISE (UnitVec.)

HT-RISE (Z-Score)
TT-ICE* (None)

TT-ICE* (UnitVec.)
TT-ICE* (Z-Score)

Figure D.15: Comparison of compression time (left) and Relative test error (right) of algorithms
using the Self-oscillating gel simulation dataset with εrel = 0.01 and using various normalization
methods. Both methods were able to reduce the approximation error below the target εrel threshold
when no normalization is employed. In addition to that, HT-RISE was able to cross the target εrel
line with z-score normalization as well. Due to the low dimensionality of the problem, TT-ICE∗

resulted in a lower compression time. Please refer to the legend of Figure D.14 for the normalization
methods.

D.6 Additional BigEarthNet results

This section presents the detailed results discussed in Section 4.3.2. Similar to Table 6,
we present experiments on the BigEarthNet dataset with εrel = 0.05 − 0.30. Figure D.16
presents the results of the experiments on compression ratio and reduction ratio of the algo-
rithms whereas Figure D.17 shows the results of the experiments considering compression
time and relative test error of the algorithms.

Figure D.16 shows that at high target relative error levels, TT-ICE∗ offers higher CR
and RR than HT-RISE. At εrel = 0.30, TT-ICE∗ achieves 2274× CR and 1901× RR whereas
HT-RISE achieves 1154× CR and 962× RR. The discrepancy between two algorithms reduces
as the target relative error level decreases. At εrel = 0.15, TT-ICE∗ achieves 117× CR and
100× RR whereas HT-RISE achieves 91× CR and 76× RR. At εrel = 0.10, the performance
of the two algorithms become even more comparable, where TT-ICE∗ achieves 35× CR and
31× RR whereas HT-RISE achieves 32× CR and 27× RR. At these target relative error
levels, neither algorithm stuggles to compress the dataset. However at εrel = 0.05, TT-ICE∗

51

Aksoy and Gorodetsky

100 101 102 103 104

Training Batches

100

101

102

103

104

C
om

pr
es

si
on

 R
at

io

100 101 102 103 104

Training Batches

100

101

102

103

104

105

R
ed

uc
tio

n
R

at
io

HT-RISE (0.05)
TT-ICE* (0.05)

HT-RISE (0.10)
TT-ICE* (0.10)

HT-RISE (0.15)
TT-ICE* (0.15)

HT-RISE (0.30)
TT-ICE* (0.30)

Figure D.16: Compression ratio (CR - left) and reduction ratio (RR - right) of the algorithms
on the BigEarthNet dataset with εrel = 0.05 − 0.30. TT-ICE∗ offers higher CR (1.1 − 2× that of
HT-RISE) for all target relative error levels but εrel = 0.05. At εrel = 0.05, HT-RISE achieves 2×
the CR of TT-ICE∗ at the portion that it TT-ICE∗ is able to compress. TT-ICE∗ also offers higher
RR (1.1− 2× that of HT-RISE) for εrel = 0.10− 0.30. The results are averaged over 5 seeds.

runs into maximum walltime timeout and therefore fails to compress the entire dataset
and HT-RISE runs into maximum memory limit and therefore fails to compress the entire
dataset. The portion of the dataset that TT-ICE∗ is able to compress results in 3.59× CR
and 19.76× RR whereas HT-RISE results in 7.29× CR and 6.07× RR. However, we need to
acknowledge that the portion of the dataset that TT-ICE∗ is able to compress is significantly
smaller than the portion of the dataset that HT-RISE is able to compress.

Figure D.17 shows that irrespective of the target relative error level, HT-RISE results
in lower, if not comparable, compression time compared to TT-ICE∗. At εrel = 0.30
HT-RISE compresses the entire dataset in 2482s whereas TT-ICE∗ compresses the entire
dataset in 6239s. At εrel = 0.15 the difference becomes less pronounced as HT-RISE com-
presses the entire dataset in 14, 896s whereas TT-ICE∗ compresses the entire dataset in
18, 866s. At εrel = 0.10 TT-ICE∗ becomes slightly faster as HT-RISE compresses the en-
tire dataset in 49, 408s and TT-ICE∗ compresses the entire dataset in 44, 687s. As discussed
above, at εrel = 0.05 neither algorithm is able to compress the entire dataset. At εrel = 0.05,
TT-ICE∗ compresses 129 batches in 1720s whereas in the same amount of time HT-RISE com-
presses 443 batches. At the point of failure, HT-RISE compresses 1781 batches in 20, 880s.

D.7 Qualitative MineRL results

This section presents a qualitative comparison of the compressed frames using reconstruc-
tions. Figure D.18 shows the reconstructed video frames from the Basalt MineRL compe-
tition dataset using TT-ICE∗ and HT-RISE algorithms with εrel = 0.10 and εrel = 0.30. In
Figure D.18, we observe that HT-RISE in fact results in a better visual quality compared to
the frame of TT-ICE∗ of the same target relative error level. Despite the fact that TT-ICE∗

achieves almost 3× the CR and the RR of HT-RISE, the visual quality of the frame re-

52

Incremental Hierarchical Tucker

100 101 102 103 104

Training Batches

100

101

102

103

104

105

To
ta

l T
im

e

100 101 102 103 104

Training Batches

10 2

10 1

100

R
el

at
iv

e
Te

st
 E

rr
or

HT-RISE (0.05)
TT-ICE* (0.05)

HT-RISE (0.10)
TT-ICE* (0.10)

HT-RISE (0.15)
TT-ICE* (0.15)

HT-RISE (0.30)
TT-ICE* (0.30)

Figure D.17: Compression time (left) and relative test error (RTE - right) of the algorithms on
the BigEarthNet dataset with εrel = 0.05− 0.30. For all εrel levels, HT-RISE results in lower, if not
comparable, compression time compared to TT-ICE∗. For all εrel levels, HT-RISE is able to reduce
the RTE faster than TT-ICE∗. Each target relative error level is represented with horizontal dotted
lines in their respective colors. The results are averaged over 5 seeds.

(a) Downsampled (b) εrel = 0.10 (c) TT εrel = 0.30 (d) HT εrel = 0.10 (e) HT εrel = 0.30

Figure D.18: Reconstructed video frames from Basalt MineRL competition dataset using
TT-ICE∗ (TT) and HT-RISE (HT) algorithms with εrel = 0.10 and εrel = 0.30. The downsampled
frame is provided for baseline comparison. Visual quality of the reconstructed frames is comparable
to the downsampled frames except for the case with TT-ICE∗ at εrel = 0.30. Please refer to Table 4
and Figures 11 and 12 for quantitative results.

53

Aksoy and Gorodetsky

constructed by TT-ICE∗ at εrel = 0.30 is significantly worse than the downsampled frame.
The reconstruction of TT-ICE∗ at εrel = 0.30 is significantly blurrier compared to the re-
construction of HT-RISE at εrel = 0.30. In addition to that, we see that the visual quality
of the reconstruction from HT-RISE at εrel = 0.10 is comparable, if not identical, to the
downsampled frame even though HT-RISE offers a CR and a RR around 1.85×.

References

Doruk Aksoy, Silas Alben, Robert D Deegan, and Alex A Gorodetsky. Inverse design of
self-oscillatory gels through deep learning. Neural Computing and Applications, 34(9):
6879–6905, 2022.

Doruk Aksoy, David J Gorsich, Shravan Veerapaneni, and Alex A Gorodetsky. An incre-
mental tensor train decomposition algorithm. SIAM Journal on Scientific Computing, 46
(2):A1047–A1075, 2024a.

Doruk Aksoy, Sruti Vutukury, Thomas A. Marks, Joshua D. Eckels, and Alex A. Gorodetsky.
Compressed analysis of electric propulsion simulations using low rank tensor networks.
2024b.

Silas Alben, Alex A Gorodetsky, Donghak Kim, and Robert D Deegan. Semi-implicit
methods for the dynamics of elastic sheets. Journal of Computational Physics, 399:
108952, 2019.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by
watching unlabeled online videos. Advances in Neural Information Processing Systems,
35:24639–24654, 2022.

J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional
scaling via an n-way generalization of “eckart-young” decomposition. Psychometrika, 35
(3):283–319, 1970.

Dimitris G Chachlakis, Ashley Prater-Bennette, and Panos P Markopoulos. L1-norm higher-
order orthogonal iterations for robust tensor analysis. In ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4826–
4830. IEEE, 2020.

Maolin Che and Yimin Wei. Randomized algorithms for the approximations of tucker and
the tensor train decompositions. Advances in Computational Mathematics, 45(1):395–428,
2019.

Brian Chen, Doruk Aksoy, David J Gorsich, Shravan Veerapaneni, and Alex Gorodetsky.
Low-rank tensor-network encodings for video-to-action behavioral cloning. Transactions
on Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/

forum?id=w4DXLzBPPw.

54

https://openreview.net/forum?id=w4DXLzBPPw
https://openreview.net/forum?id=w4DXLzBPPw

Incremental Hierarchical Tucker

Saibal De, Zitong Li, Hemanth Kolla, and Eric T Phipps. Efficient computation of tucker de-
composition for streaming scientific data compression. arXiv preprint arXiv:2308.16395,
2023.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1 and rank-(r
1, r 2,..., rn) approximation of higher-order tensors. SIAM journal on Matrix Analysis
and Applications, 21(4):1324–1342, 2000a.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value
decomposition. SIAM journal on Matrix Analysis and Applications, 21(4):1253–1278,
2000b.

Lars Eldén and Berkant Savas. A newton–grassmann method for computing the best mul-
tilinear rank-(r 1, r 2, r 3) approximation of a tensor. SIAM Journal on Matrix Analysis
and applications, 31(2):248–271, 2009.

Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM journal on
matrix analysis and applications, 31(4):2029–2054, 2010.

Charles R. Harris, K. Jarrod Millman, Stéfan J.van der Walt, Ralf Gommers, Pauli Vir-
tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Na-
ture, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL https:

//doi.org/10.1038/s41586-020-2649-2.

Richard A Harshman et al. Foundations of the parafac procedure: Models and conditions
for an “explanatory” multi-modal factor analysis. UCLA working papers in phonetics, 16
(1):84, 1970.

Jean Kossaifi, Nikola Kovachki, Kamyar Azizzadenesheli, and Anima Anandkumar.
Multi-grid tensorized fourier neural operator for high-resolution pdes. arXiv preprint
arXiv:2310.00120, 2023.

Daniel Kressner and Lana Perisa. Recompression of hadamard products of tensors in tucker
format. SIAM Journal on Scientific Computing, 39(5):A1879–A1902, 2017.

Daniel Kressner and Christine Tobler. Algorithm 941: Htucker—a matlab toolbox for ten-
sors in hierarchical tucker format. ACM Transactions on Mathematical Software (TOMS),
40(3):1–22, 2014.

Daniel Kressner, Bart Vandereycken, and Rik Voorhaar. Streaming tensor train approxi-
mation. SIAM Journal on Scientific Computing, 45(5):A2610–A2631, 2023.

Pieter M Kroonenberg and Jan De Leeuw. Principal component analysis of three-mode
data by means of alternating least squares algorithms. Psychometrika, 45:69–97, 1980.

55

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

Aksoy and Gorodetsky

Isabell Lehmann, Evrim Acar, Tanuj Hasija, Vince D Calhoun, Peter J Schreier, and Tülay
Adali. Multi-task fmri data fusion using iva and parafac2. In ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1466–1470. IEEE, 2022.

Huazhong Liu, Laurence T Yang, Yimu Guo, Xia Xie, and Jianhua Ma. An incremental
tensor-train decomposition for cyber-physical-social big data. IEEE Transactions on Big
Data, 7(2):341–354, 2018.

Yiran Luo, Het Patel, Yu Fu, Dawon Ahn, Jia Chen, Yue Dong, and Evangelos E Papalex-
akis. Trawl: Tensor reduced and approximated weights for large language models. arXiv
preprint arXiv:2406.17261, 2024.

Qing Mai and Xin Zhang. Statistical Methods for Tensor Data Analysis, pages 817–
829. Springer London, London, 2023. ISBN 978-1-4471-7503-2. doi: 10.1007/
978-1-4471-7503-2 39. URL https://doi.org/10.1007/978-1-4471-7503-2_39.

Osman Asif Malik and Stephen Becker. Low-rank tucker decomposition of large tensors
using tensorsketch. Advances in neural information processing systems, 31, 2018.

Thomas Marks and Alex Gorodetsky. Hall thruster simulations in warpx. 2024.

Stephanie Milani, Anssi Kanervisto, Karolis Ramanauskas, Sander Schulhoff, Brandon
Houghton, and Rohin Shah. Bedd: The minerl basalt evaluation and demonstrations
dataset for training and benchmarking agents that solve fuzzy tasks. Advances in Neural
Information Processing Systems, 36, 2024.

Rachel Minster, Zitong Li, and Grey Ballard. Parallel randomized tucker decomposition
algorithms. arXiv preprint arXiv:2211.13028, 2022.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33
(5):2295–2317, 2011.

Ivan V Oseledets and Eugene E Tyrtyshnikov. Breaking the curse of dimensionality, or how
to use svd in many dimensions. SIAM Journal on Scientific Computing, 31(5):3744–3759,
2009.

Yannis Panagakis, Jean Kossaifi, Grigorios G Chrysos, James Oldfield, Mihalis A Nicolaou,
Anima Anandkumar, and Stefanos Zafeiriou. Tensor methods in computer vision and
deep learning. Proceedings of the IEEE, 109(5):863–890, 2021.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning
mesh-based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Shaden Smith, Kejun Huang, Nicholas D Sidiropoulos, and George Karypis. Streaming ten-
sor factorization for infinite data sources. In Proceedings of the 2018 SIAM International
Conference on Data Mining, pages 81–89. SIAM, 2018.

56

https://doi.org/10.1007/978-1-4471-7503-2_39

Incremental Hierarchical Tucker

Gencer Sumbul, Marcela Charfuelan, Begüm Demir, and Volker Markl. Bigearthnet: A
large-scale benchmark archive for remote sensing image understanding. In IGARSS 2019-
2019 IEEE International Geoscience and Remote Sensing Symposium, pages 5901–5904.
IEEE, 2019.

Gencer Sumbul, Arne De Wall, Tristan Kreuziger, Filipe Marcelino, Hugo Costa, Pedro
Benevides, Mario Caetano, Begüm Demir, and Volker Markl. Bigearthnet-mm: A large-
scale, multimodal, multilabel benchmark archive for remote sensing image classification
and retrieval [software and data sets]. IEEE Geoscience and Remote Sensing Magazine,
9(3):174–180, 2021.

Yiming Sun, Yang Guo, Charlene Luo, Joel Tropp, and Madeleine Udell. Low-rank tucker
approximation of a tensor from streaming data. SIAM Journal on Mathematics of Data
Science, 2(4):1123–1150, 2020.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Ale-
siani, Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scien-
tific machine learning. Advances in Neural Information Processing Systems, 35:1596–1611,
2022.

Fan Tian, Misha E Kilmer, Eric Miller, and Abani Patra. Tensor bm-decomposition
for compression and analysis of spatio-temporal third-order data. arXiv preprint
arXiv:2306.09201, 2023.

Charalampos E Tsourakakis. Mach: Fast randomized tensor decompositions. In Proceedings
of the 2010 SIAM international conference on data mining, pages 689–700. SIAM, 2010.

Ledyard R Tucker. Implications of factor analysis of three-way matrices for measurement
of change. Problems in measuring change, 15(122-137):3, 1963.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31(3):279–311, 1966.

Ledyard R Tucker et al. The extension of factor analysis to three-dimensional matrices.
Contributions to mathematical psychology, 110119, 1964.

Nick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen. A new truncation strategy for
the higher-order singular value decomposition. SIAM Journal on Scientific Computing,
34(2):A1027–A1052, 2012.

Fuxi Wen and Hing Cheung So. Robust multi-dimensional harmonic retrieval using itera-
tively reweighted hosvd. IEEE Signal Processing Letters, 22(12):2464–2468, 2015.

Yifan Yang, Jiajun Zhou, Ngai Wong, and Zheng Zhang. Loretta: Low-rank economic
tensor-train adaptation for ultra-low-parameter fine-tuning of large language models. In
Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers),
pages 3161–3176, 2024.

57

Aksoy and Gorodetsky

Chao Zeng and Michael K Ng. Incremental cp tensor decomposition by alternating min-
imization method. SIAM Journal on Matrix Analysis and Applications, 42(2):832–858,
2021.

Jiani Zhang, Arvind K Saibaba, Misha E Kilmer, and Shuchin Aeron. A randomized tensor
singular value decomposition based on the t-product. Numerical Linear Algebra with
Applications, 25(5):e2179, 2018.

Zhengwu Zhang, Genevera I Allen, Hongtu Zhu, and David Dunson. Tensor network fac-
torizations: Relationships between brain structural connectomes and traits. Neuroimage,
197:330–343, 2019.

Guoxu Zhou, Andrzej Cichocki, and Shengli Xie. Decomposition of big tensors with low
multilinear rank. arXiv preprint arXiv:1412.1885, 2014.

58

	Introduction
	Background
	Tensors
	Tucker format
	Hierarchical Tucker Format
	Leaves-to-root error truncated hierarchical Tucker decomposition

	Methodology
	Batch hierarchical Tucker
	Incremental Updates

	Numerical Experiments
	Performance Metrics
	Compression ratio (CR) and Reduction ratio (RR)
	Compression time
	Relative test error

	Scientific data results
	Self-oscillating gel simulations
	PDEBench 3D Navier-Stokes simulations

	Image data
	Minecraft frames
	Multispectral images

	Conclusion
	Proofs
	Supplementary Algorithms
	Alternative approach to determine an upper bound to the approximation error
	Additional results
	Comparison of the batch hierarchical Tucker format and the hierarchical Tucker format
	Effect of the reshaping on compression performance
	Effect of the axis ordering on compression performance
	Additional PDEBench results
	Additional self-oscillating-gel simulations results
	Additional BigEarthNet results
	Qualitative MineRL results

