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Abstract We develop a deep learning architecture for

inverse design of a self-oscillating sheet propelled by an

embedded chemical reaction. The dynamics of our prob-

lems are nonlinear and exhibit chaotic behavior, a chal-

lenging setting for existing deep-learning-based inverse

design approaches. The aim is to explore data-driven

design of soft robots using a novel locomotion mecha-

nism. We train the architecture using a forward model

of the locomotion mechanism developed recently by Al-

ben et. al (2019). The architecture is shown to success-

fully map a snapshot of target motions of the gel into

geometric and reaction parameters. The final architec-

ture consists of a Multi-layer Perceptron (MLP) classi-

fier for discrete parameters followed by a stacked MLP

regressor (SMLPR) for continuous parameters.Our in-

verse design setting is unique in that it considers both

discrete and continuous outputs, requiring an architec-

ture capable of classification and regression. We are able

to recover parameters within 2.87% accuracy. We also

compare the simulated motion of the sheets at the re-

covered parameters. Because the motion has a chaotic

quality, our demonstration is able to show quantita-

tive agreement for a small time horizon and qualitative

agreement over longer time horizons. We also demon-

strate agreement of Lyapunov exponents up to 6.78%

accuracy for suitable motions.
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1 Introduction

Conventional robots with rigid bodies can be designed

and programmed for accomplishing specific tasks effi-

ciently [1,2]. However, this efficiency comes with a price

in adaptability. On the other hand, soft robots that are

inspired by structures existing in nature offer flexibility

to different tasks [3] and promise increased collabora-

tion opportunities between man and machine [4]. As

attention in this subfield of robotics increases, success-

ful adoption of these approaches becomes more frequent
across areas including surgical tools [5], marine explo-

ration [6], wearables [7,8] and assistive devices [9].

One of the main challenges to deploying soft robots

in real-life conditions is providing energy or signal to

actuators to initiate or sustain locomotion. A variety

of actuation possibilities have emerged in recent years:

[10] uses pressurized air flow through special channels

within the robot to actuate finger-like soft structures,

[11] uses various cables to mimic the pushing-based lo-

comotion and object grasping of octopi, [12] uses hy-

draulic pressure to create a helical gripper that mimics

snakes and elephant trunks and [13] uses dielectric elas-

tomer actuators to mimic the crawling motion of inch-

worms. However, all of those options share a common

problem: they either need to be connected to external

power/signal sources or are required to have onboard

power supply. Furthermore, the control circuitry and

actuators determine a lower limit on the size of the

robots, which may pose a problem for operations in

confined spaces.
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A variety of propulsion methodologies have been

proposed for smaller scale robots without those limi-

tations: [14] proposes propulsion through altering the

surrounding magnetic field to micromachines, [15] uti-

lizes acoustic waves to actuate an untethered device and

control its movement, and [16] uses structured light to

trigger liquid crystal polymers to motion. In this pa-

per, we consider an alternative approach based on the

motion of chemical-reaction driven sheets of gels.

The idea of inducing motion of gels using oscilla-

tory chemical reactions was introduced to soft robotics

by Yoshida et al. [17]. Yoshida and collaborators have

since shown various transduction schemes; a C-shaped

gel that propels itself across a toothed surface as the

raction in the active gel causes it to expand and con-

tract [18]; artificial cilia [19,20]; surface waves that in-

duce rolling and translation of a cylinder [21], and trans-

port of a bubble within a tube [22]. The oscillatory mo-

tion resulting from the chemical reactions was investi-

gated and modeled in [23]. On the other hand, instead

of having the polymer gels react to their environment

autonomously, [24] used simulations to investigate us-

ing light to guide the response of self oscillating gels.

That non-invasive method of triggering the BZ reac-

tion was promising, since it allowed the reaction (and

therefore the resultant motion) within the soft material

to be controlled in a purpose-driven way. Being able to

control the motion of gels without a physical actuator

will contribute greatly to completely untethered, self

sufficient robots for the soft robotics field.

By extending previous applications on the luminously

-triggered gels to sheet form, [25] demonstrates how use-

ful light can be in this context by creating and modi-

fying the pattern of the BZ reactions and therefore im-

plying the controllability of this process. Furthermore,

in the same work, a non-Euclidean elasticity approach

was presented and verified with experiments and simu-

lations. In [26], the authors used a semi implicit method

to simulate self-oscillating gel, and the results of that

paper form the basis of the present work.

Though the behaviour of these self oscillating gels

can be accurately and efficiently simulated for a fixed

set of parameters, a robust approach to find parame-

ters that induces a target motion does not exist. Since

these parameters are typically continuous, the motion

of the sheet is sensitive to the choice of parameters, and

the motion of the sheet is nonlinear and exhibits chaos;

brute force tuning of parameters may not yield precise

results.

This paper provides a systematic case study for the

development of an inverse design tool that maps sheet

motion to sheet parameters. Inverse design is an in

silico technique adopted by different engineering dis-

ciplines that aims to accelerate the search process in

multidimensional continuous spaces. [27] uses an MLP

based inverse design architecture in design of microstrip

antennas, [28] uses inverse design with generative deep

neural networks to discover and design novel materi-

als, [29] uses convolutional neural networks to design

airfoils, and [30] uses inverse design to determine the

sample structure information from measured spectrum.

Machine learning-based inverse design is also used

in the soft robotics world; [31] uses an FEM-based ma-

chine learning architecture to obtain the inverse sensor

function. We adopt a similar method to [32] for con-

structing the training and validation data in this work:

instead of collecting real-life data of oscillating gels, we

use the simulation of system proposed in [26] to create

our data set, which makes our inverse design architec-

ture a simulation based inverse design.

The contribution of this paper is a deep learning

architecture that is able to effectively perform inverse

design for determining geometric parameters and pa-

rameters of the chemical reaction to induce a target

motion of the self-oscillating sheet. We step through a

comprehensive set of hyper-parameter tuning activities

and we finally demonstrate verification simulations. For

at least 50% of the feasible domain of parameters, we

are able to predict parameter settings for motions that

are not in the test set within 2% with this architecture.

1.1 Comparison with Existing Approaches

In this section we compare and contrast other inverse

design approaches with our proposed architecture and
application. Inverse design is an emerging tool in the

soft robotics world with very few examples and to our

knowledge, this work is the first work bridging deep

learning powered inverse design methods with autonomously

actuated soft robotics. Inverse design has predominately

been used in materials and crystals research, which ex-

hibit different problem structures and can exhibit differ-

ent types of complexity. Below we review several inverse

design approaches, where we see a common theme that

our application and approach is distinguished by the

fact that (1) we consider a nonlinear, dynamical rather

than a static, system; (2) we consider an architecture

that does both regression and classification; and (3) we

provide an extensive hyperparameter tuning procedure

that also gives an insight into architecture robustness.

In [33], the authors investigated inverse design in

context of nanoparticle light scattering spectra. Simi-

lar to our approach, they create training set through

exhaustive numerical simulations on a sparse subset of

the simulation domain. Then, they train an MLP NN
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to replace a forward simulation approximating Maxwell

interactions. By reversing the MLP network and train-

ing it in the ”reverse” direction to fine-tune the inverse

mapping, they obtain a framework calculating the nec-

essary layer thicknesses for the nanoparticle that would

give the prescribed scattering profile. In contrast to our

proposed framework that provides a single architecture

including both classification and regression, the authors

assume the discrete parameter (number of layers of the

nanoparticle) is known and train separate networks for

each one.

In [34], the authors develop crystal graph CNNs

framework to learn material properties from the connec-

tion of atoms in the crystal. Instead of simulated data or

images, they use crystal graphs that encode atomic in-

formation and atomic configuration in the crystals. By

passing that feature vectors through the CNN frame-

work, they obtain both discrete and continuous prop-

erties of a given crystal. In contrast to this example,

we were able to achieve our target accuracy without

resorting to complicated architectures such as CNNs.

However, in order to achieve our stringent target accu-

racy we needed to include a stacking network on top of

the first MLPR. Another major difference between the

two approaches is the fact that we are considering the

dynamics of our system of interest, whereas [34] does

not.

Inverse design has also been used for predicting air-

foil/wing shapes and parameters from aerodynamical

parameters. In [35], the authors train various types of

NNs (including MLP) using a small dataset comprised

of different airfoil types to obtain geometrical parame-

ters of the requested airfoil/wing to accelerate aerody-

namic design processes tailored to given criteria. In con-

trast to our application, the authors use self-organizing

maps as multi-class classification to help their frame-

work decide which airfoil type to choose and then de-

termine the geometrical parameters of the selected air-

foil type. By adopting this method, they alleviate the

adverse effects of having a small training set and high-

dimensional target. In [29], the authors considered a

similar application, but instead they use 2D Cp distri-

bution images from simulations and various CNN ar-

chitectures to estimate the airfoil shape responsible for

the given Cp distribution. They have conducted a more

concise version of network hyperparameter tuning pro-

cedure that resembles to the one we have conducted in

this work. However, they are using ”static” images of

the Cp distribution whereas we are considering a dy-

namical system of the oscillation of the gel sheet in our

framework.

In [27] the author uses an MLP based inverse de-

sign framework to obtain structural parameters of mi-

crostrip circular antennas that would give a prescribed

frequency response. Similar to our approach, the author

uses a forward simulation including PDEs to generate

the training data. However, the input to their inverse

design framework is in frequency domain, whereas our

architecture works with inputs in time domain. Addi-

tionaly, the methodology in [27] lacks the classification

stage that is essential to our method.

In [36], the authors use a supervised autoencoder

(SAE) based inverse design architecture, where they

feed in vectorized images of graphene kirigami struc-

tures and reduce to a 10-dimensional latent space in-

cluding the ultimate stress and strain as supervised pa-

rameters. The authors embed inverse design into an ar-

chitecture mainly used for dimensionality reduction and

in addition, they force two elements of the latent space

to be physical properties such as stress and strain. An-

other noteworthy achievement in [36] is the ability of

the framework’s ability of interpolation between two

distinct cut orientations (horizontal, vertical) to get

shapes that have diagonal slits. Since we do not in-

vestigate superposition of multiple wave types in our

analysis, we refrain from using interpolation methods

between classes in our framework. Moreover, we sep-

arate the inverse design stages for the distinct classes

using a MLP classifier to make the regression afterwards

easier.

In [37], the authors use an encoder-decoder archi-

tecture comprised of 1D convolutional layers to obtain

geometrical parameters of an acoustic sink using given

a sound absorption coefficient profile. Using the sim-

ulated parameter-absorption profile pairs, the authors

train the encoder and decoder portions of the proposed

framework separately. For some selected profiles, they

manufacture the acoustic sinks using additive manu-

facturing and test the sound absorption profile using

an experimental setup. Finally, they compare the sound

absorption coefficient profiles of the prescribed, the esti-

mated (using the decoder) and the built acoustic sinks.

We do not seek to replace the forward simulation devel-

oped by [26], therefore we do not need anything similar

to the decoder stage in [37]. Instead, we introduce stack-

ing to the regression stage to account for the errors in

the predicted parameters due to their position in the

3 dimensional coordinate space (P ⊂ R3). Finally, [37]

also lacks the classification stage that plays a crucial

role in our framework.

To summarize, the existing approaches consider meth-

ods ranging from autoencoders to different CNN setups.

Even though there exists similar MLP-based inverse de-

sign approaches in the literature, none of the aforemen-

tioned works (except [35] which implicitly does multi-

class classification through self-organizing maps) pro-
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vide classification and regression within a single archi-

tecture. Additionally, none of the listed works do in-

verse design on a dynamical system. Last but not least,

despite the differences in applications and methodolo-

gies followed, only [29] follows a hyperparameter tuning

procedure such as we do in the sections that follow. The

rigorous procedure we follow in our work helps us jus-

tify the robustness of our methodology and provides

explanation for the particular hyperparameter setting

that we decide at the end.

The rest of this paper is organized as follows: Sec-

tion 2 provides detail about the forward simulation by

introducing the underlying equations and discretiza-

tion, Section 3 describes the inverse design problem and

introduces the proposed two-staged architecture, Sec-

tion 4 explains the experimental procedure along with

the obtained results for both classification and regres-

sion as well as with the verification simulations, and

Section 5 summarizes our findings.

2 Forward simulation

In this section, the simulation model used as the for-

ward simulation for generating data is described. This

simulation model is based on a semi-implicit solver de-

veloped by Alben and co-authors [26].

2.1 Equations for the dynamics of flexible sheets

This section describes the equation used to simulate a

hexagonal self-oscillating gel sheet defined via a trian-

gular lattice (for example, left panel of Fig. 1). The

lattice has stretching springs between neighboring ver-

tices, and bending springs with energy proportional to

the square of the (dihedral) angle between neighboring

triangular faces. As the lattice spacing tends to zero,

the energy closely approximates that of a continuum

isotropic elastic sheet [38,39,26]. The motion of the lat-

tice is driven by time- and space-varying distributions

of the rest lengths of the stretching springs. In the mo-

tivating experiments on thin gel sheets [25], there are

chemical waves, radial or spiral in form, that induce lo-

cal swelling of the sheets. As a simple model, we study

radial or planar (unidirectional) traveling waves in the

corresponding simulations:

Radial wave : η(x, y, t;A, k) =

1 + A sin
(

2π(k
√
x2 + y2 − t)

)
(1)

Planar wave : η(x, t;A, k) =

1 + A sin(2π(kx− t)) (2)

Here η is the relative change in rest length of the stretch-

ing springs, and is a sinusoidal traveling wave function

of the (x, y) location in the undeformed sheet and time

t, with wave amplitude A, and wavenumber k. The

sheet moves by overdamped dynamics

µ
∂r

∂t
= fS(r;Ks, η) + fB(r). (3)

with stretching force fS , bending force fB , and damp-

ing constant µ. We nondimensionalize quantities with

dimensions of length by the radius of the hexagonal

sheets, and time by the period of η (assumed to be

time-periodic). fS is proportional to the stretching stiff-

ness Ks (nondimensionalized by bending stiffness, and

thus this constant is proportional to sheet thickness to

the −2 power [26]). The rest strain function η enters

fS explicitly, but not fB . If the sheet is initially nearly

planar, with a small out-of-plane perturbation, and η

is spatially nonuniform, fS can cause the perturbation

to grow, i.e. buckling. Buckling occurs above a critical

threshold of the rest strain amplitude A. The threshold

decreases as Ks increases, i.e. when the stretching force

becomes more dominant over the bending force, which

resists buckling.

To solve Eq.(3), we apply a semi-implicit method

with a 2nd-order-in-time backward differentiation dis-

cretization, developed in [26]:

µAp
3rn+1 − 4rn + rn−1

2∆t
=

KsLrn+1 + 2fSE(rn)− fSE(rn−1) + Brn+1 − 2Brn

+ Brn−1 + 2fB(rn)− fB(rn−1)

(4)

The superscripts denote time steps. On the right hand

side of Eq. (4), the first three terms represent the stretch-

ing force. Of these, the first, depending on rn+1, is im-

plicit and linear (with L a discrete Laplacian matrix),

and the second and third (denoted fSE) are explicit and

nonlinear, but bounded in norm. The remaining terms

are the bending force, again with a linear implicit term

(involving B, a discrete biharmonic matrix) that ap-

proximates the bending force at time step n+ 1, while

the remaining terms approximate the remainder of the

bending force with second-order temporal accuracy.

2.2 Examples of flexible sheet dynamics

We spatially discretize an initially flat hexagon of ra-

dius 1 with an equilateral triangular lattice mesh, with

initially uniform mesh spacing 1/33, giving 3367 mesh
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Fig. 1: A snapshot of the flexible sheet (left) and stretching and bending force norms (right) at t = 20. Sheet

parameters: A = 0.1, Ks = 7500, k = 2, T =Radial.

points. We apply a small out-of-plane perturbation, and

evolve the sheet forward in time with Eq. (4). For large

enough wave amplitude A, the sheet rapidly buckles

into shapes with time-varying distributions of curva-

ture, large in magnitude. Each simulation is run for

t ∈ [0, 20] to allow a sufficient amount of time for the

sheet to evolve beyond the transient initial buckling mo-

tion. Fig. 1 shows a snapshot of the sheet (left panel)

during an example of the dynamics. The right panel

shows the corresponding time traces of the norms of the

stretching force (red) and bending force vectors (blue),

denoted Fstretch and , Fbend.

A set of snapshots of the motion over time for vary-

ing A is shown in Fig. 2. Note that with increasing wave

amplitude the sheet experiences different patterns of

curvature resulting from outward-moving circumferen-

tial bands of dilation and contraction. The range of the

simulation parameters for which this occurs is discussed

in Section 4.1. We take the sheet position r—x, y and

z coordinates at each of the 3367 lattice points, and for

each time step—as the training features. We also use

the stretching and bending force vectors, which have

the same dimensions as the position. The stretching and

bending forces involve second- and fourth-order deriva-

tives, respectively, of the lattice positions. These forces

can be written in terms of the sheet curvature and its

spatial derivatives, and hence give measures of the sheet

shape.

In Fig. 1 right panel, the force vector norms evolve

nonperiodically in time, reflecting nonperiodic dynam-

ics of the sheet position. Nonetheless, the sheet shape

is often smooth, with certain approximate spatial sym-

metries, such as a bilateral symmetry for the snapshot

in the left panel.

3 Inverse design for the flexible sheet analysis

In this section, we describe the inverse design problem

— the task of mapping motion to parameters. Motion

is explicitly defined by a discrete sequence of snapshots

of the shape of a three dimensional lattice and associ-

ated derived quantities such as bending and stretching

forces.

The inverse design problem is solved using data cre-

ated by the simulation described in Section 2. The pa-

rameters, inputs, and simulation outputs used in this

design problem are provided in Fig. 3. The sheet pa-

rameters are amplitude A, stretching stiffness constant

Ks, wavenumber k, and wave type T . The amplitude A,

sheet stiffness Ks and wavenumber k are all continuous

parameters. The type T is a binary variable specifying

wave form type — 0 for radial travelling wave and 1 for

planar travelling wave. The ranges of the continuous pa-

rameters are chosen to avoid sheet deformations which

are not physically possible, as described in Section 4.1.

Our contribution is a learning architecture that con-

verts target motion into sheet/reaction parameters. This

architecture has two stages: the first stage is a classi-

fier that determines wave types from lattice snapshots,

and the second stage consists of two regressors — one

for each wave-type — to identify the continuous pa-

rameters. Principal Component Analysis (PCA) is used

as the main preprocessing step for the inputs in both

stages.

Standardization of data before and/or after apply-

ing PCA is done for multitude of reasons: 1) to neutral-

ize the effects of outlier in the data [40], 2) to make the

units of the variables comparable [41] and 3) to neutral-

ize the difference in the orders of magnitude between
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Fig. 2: Snapshots of the sheet with various values for A, listed at left, between t = 19 and t = 20 (0.2 time units

between each image). Here we have a radial wave for η in (1) with k = 1; and we take Ks = 1.15 · 104. [26]

Simulation parameters

A (Amplitude)
Ks (Stretching stiffness constant)
k (Wavenumber)
T (Type)

Simulation outputs

Pts (Lattice location)
Fbend (Bending force)
Fstretch (Stretching force)

mapping g

(known− Eq.(1))

inverse mapping g−1

(unknown− learned)

Fig. 3: Inverse engineering diagram for the flexible sheet analysis.

data [42]. A schematic of this architecture is shown in

Fig. 4. In the following sections, the components of this

architecture are discussed in detail.

3.1 Stage 1: MLP Classifier with PCA preprocessing

The first stage is a Multi-Layer Perceptron (MLP) clas-

sifier [43] that distinguishes between reaction wave types.

Since there are different types of symmetries on the

sheet for different types of motions (radial symmetry

for radial waves and plane symmetry for planar waves)

we found that using only the x coordinates of the lattice

points are sufficient to determine the motion type.

We also find that preprocessing with principal com-

ponent analysis (PCA) both accelerates the learning

algorithm as well as increases accuracy by up to 50%

(for single snapshot training) and 3% (for 10 Snapshot

training), as will be discussed in Section 4. For each

training snapshot, the raw features used as inputs to

PCA are the x coordinates of 3367 lattice points ob-

tained from the simulations. We found it is not neces-

sary to use the time dependencies of the snapshots to

obtain accurate predictions of reaction wave type.

PCA preprocessing extracts linearly uncorrelated fea-

tures from the lattice positions and reparameterizes the

data along new orthogonal axes with decreasing vari-

ance [44,45]. It can be computed using the singular

value decomposition (SVD) [46] as follows. Let us con-

sider n data points, each with m features. SVD de-

composes the data set organized in an m × n matrix,

X ∈ Rm×n, into three factors

X = U Σ V T where U ∈ Rm×m,
Σ ∈ Rm×n, V ∈ Rn×n. (5)

The columns of Ũ = UΣ represent principal direc-

tions onto which X is projected. The projected values

are called principal components. The projection of X

onto the first p principal directions (ũ1 to ũp with ũi
sorted in decreasing singular value order) creates the

new data matrix Y , whose coordinates are defined by

the columns of U

Y = [ũ1, · · · , ũp]T X, where Y ∈ Rp×n, p ≤ m (6)

Using this formulation, the size of the feature space is

reduced to p.

PCA preprocessing enables a reduction in the num-

ber inputs into a neural network, and thereby enables a

more compact network architecture [47]. Furthermore,

evidence suggests that the resulting PCA-NN architec-

ture can achieve better performance in some cases [48],

with multiple successes found in the literature [49–51].
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X Coordinates

Z Coordinates

Y Coordinates

Bending Force

Stretching Force

MLP Classifier

PCA

PCA

PCA

PCA

T=0 T=1

MLP Regressor

PCA Motion 
Type

Sheet 
Parameters

Fig. 4: Structure of the inverse mapping architecture. MLP classifier (red) is used to determine the motion type

on the gel. According to the motion type, the architecture selects one of the specialized MLP regressors (green)

and predicts the continuous sheet parameters.

Though PCA offers reduction of dimension for data

sets, the size of the data sets used in learning can still

hinder learning algorithms due to large memory re-

quirements for standard PCA. To prevent this prob-

lem we used a memory efficient version of PCA, called

Incremental PCA (iPCA) [52,53]. Incremental PCA de-

termines principle components by using a sequence of

mini-batches of the initial data set.

Following iPCA and renormalization, the new fea-

tures passed through a classifier that is comprised of

fully connected layers, of which at least one is a hidden

layer. ReLU activation functions are used in the hidden

layers. The output layer uses a sigmoid function to ob-

tain a value between [0, 1]. The output is then rounded

to the nearest integer to indicate one of the labels for

the motion of the gel.

3.2 Stage 2: MLP Regressor with PCA Preprocessing

The second stage of the architecture is a stacked set

of regressors, one stacked regressor for each wave type.

These regressors aim to identify the three continuous

sheet parameters: amplitude, stiffness, and wavenumber

(A,Ks, k respectively).

The features used for this portion of the architec-

ture are the y and z coordinates of the lattice points

and the resultant bending and stretching forces on the

gel sheet (fb and fs, respectively). The force compo-

nents are nonlinear combinations of higher order deriva-

tives of the lattice positions. We found that using this

physics-inspired quantity avoids the need to incorpo-

rate convolutional layers that also essentially extract

derivatives.

Since the regressor networks are specialized to sin-

gle reaction wave type (either radial or planar), only

the simulations of one wave type is used as training set.

For each snapshot, the raw features used as inputs to

another PCA preprocessing procedure (see Fig.5) are

the y and z coordinates of 3367 lattice points as well

as 10 bending, and 10 stretching force norms that are

calculated between each snapshot (a sum of 6754 =

2 × 3367 + 10 + 10 total features). Similar to the clas-

sification stage, the time dependencies of the training

snapshots are not taken into consideration.

To keep the analysis concise, we are using a fixed

dimension reduction via PCA transformation from 10

to 7 for both bending and stretching force data. We

want to keep the number of the principal components

for force components as high as possible so that the

force components are not outnumbered by the coordi-

nate components at the input layer of the networks.

The performance may increase by changing this coor-
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dinate transformation but we keep it out of our analysis

because we were able to achieve excellent results even

by fixing it at 7.

This regressor structure outputs the three contin-

uous sheet parameters. Unlike the classification stage,

this stage consists of two stacked networks as shown in

Fig. 5.

This parameter estimation problem can be visual-

ized as following: a given simulation’s data coresponds

to a unique coordinate in the feasible parameter space

(P ⊂ R3) and our aim is to find that coordinate in P us-

ing the proposed SMLPR structure. The first regressor

network stage makes an initial prediction about the co-

ordinate of a given simulation data in P. However, this

estimation has low robustness (high percentile values

over the test set). The second regressor network uses

the outputs of the first network (preliminary coordi-

nate predictions of the three continuous sheet parame-

ters in P) on top of the inputs used at the first network

(preprocessed x, y coordinates and fb, fs) as input and

outputs the final predictions for the three continuous

sheet parameters. Adding the preliminary coordinate

estimates from the first network to the coordinate and

force components reduces the distance between the ac-

tual and estimated parameters in the parameter space

P.

Furthermore by including the initial predictions of

the input data in the second network’s inputs, we aim

to eliminate the underlying effects of the location of the

parameters in the 3D parameter space on the estima-

tion accuracy.

Similar to the classification portion, ReLU activa-

tion function is used for all fully connected layers with

the exception of output layers of each network due to

regression purposes.

4 Experiments and Results

In this section we describe the data generation and

training procedures; present our approach to architec-

ture determination; and demonstrate inverse design per-

formance.

Scikit-Learn [54] is used for all preprocessing and

PyTorch [55] is used for all neural network training.

Computers used for training the networks are equipped

either with an NVIDIA Quadro P1000 GPU with 4GB

memory1 or with an NVIDIA GeForce GTX 1050 Ti

1 source: www.nvidia.com/content/dam/en-
zz/Solutions/design-visualization/quadro-product-
literature/301968-DS-NV-Quadro-Pascal-P1000-US-
03Feb17-NV-fnl-WEB.pdf

with Max-Q Design with 4GB memory2. All of the

graphics card drivers are up to date at the time of

the trainings3. The classifiers are trained using binary

cross-entropy loss. The regressors are trained using squared

loss. The optimization procedure use the Adaptive Mo-

ment Estimation (ADAM) stochastic gradient descent [56].

Hyperparameters for

ADAM are set as in [56]: α = 0.001, β1 = 0.9, β2 =

0.999 and ε = 10−8. In addition to the hyperparame-

ters, the sizes of the batches of each training method

are adjusted so that there are 26 batches for all classifi-

cation case studies to enable reasonable memory usage

on our hardware and provide a fair ground to evalu-

ate the classification accuracy by fixing the number of

updates on the weights.

We use a fixed number of 20 training epochs for clas-

sification case studies to keep the training time short

and avoid overfitting of the network. For regression we

use 200 epochs as baseline epoch count. The number of

batches for regression studies are limited to 256 to limit

the memory usage on our hardware. We did not find

significant sensitivity to the number of epochs in the

classification case. The effect of the number of epochs

for the regressors is investigated in Section 4.3.

4.1 Data generation

In this section, we identify the parameter domain, train-

ing data, and validation data.

The parameter bounds are determined through ran-

dom and targeted sampling across the simulation space

to identify a rectangular region containing feasible mo-

tions. This procedure yields A ∈ [0.01, 0.22] for the am-

plitude; Ks ∈ [103, 104] for the stretching stiffness; and

k ∈ [0.1, 10] for the wave number.

The parameter domain for these continuous vari-

ables is then obtained as a tensor product space P.
To generate the training data we discretize P into

a 16 × 20 × 20 grid of equidistant points. For each pa-

rameter combination p(i) ∈ P we generate a simulation

for both wave types — yielding 6400 = 16 × 20 × 20

simulations per wave type.

Each simulation results in a solution r(i)(t) for t ∈
[0, 20]. Our networks are trained at certain snapshots

of this solution, and these snapshots are selected from

t ∈ [6.1, 7.0]. Fig. 1 shows that this time is after the

initial transient phase and still provides us with times

in the future with which we can test extrapolation.

2 source: www.geforce.com/hardware/desktop-
gpus/geforce-gtx-1050-ti/specifications
3 February 20, 2020
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Fig. 5: Stacked MLP Regressor (SMLPR) architecture consists of two components (green boxes). First layer MLPR

outputs the sheet parameters and those sheet parameters are fed into the second MLPR stage along with force

and coordinate components. The second stage outputs the sheet parameters more accurately (yellow box).

We generate two different types of training data

sets from these trajectories. In the first version, which

we call single-snapshot-per-simulation, we choose only

a single time instance for the training data. In this case

we will use ten different training data sets to train ten

different networks. Specifically, each of the data sets

corresponds to snapshots from t = 6.1, 6.2, . . . , 7.0. In

the second version, multi-snapshot-per-simulation, we

use a single larger training set with all ten-snapshots-

per-simulation in the training data.

Both networks will be tested on a validation set V.
This validation set is obtained by generating 15000 ran-

dom uniformly distributed parameters across the input

domain P and then obtaining simulation results for

each wave-type. To test extrapolation performance, a

total of 20 validation snapshots are taken from each of

these simulation from the time span t ∈ [7.1, 9.0].

4.2 Classification

In this section we perform a parametric study over net-

work architectures to determine a classifier. This study

is a single feed-forward process by which we first opti-

mize the number of hidden units, then the number of

hidden layers, and then the number of principle com-

ponents. We show that this process leads to sufficient

accuracy for the classification network. The baseline ar-

chitecture from which we begin has 1 hidden layer and

10 hidden units. This process is performed for both

the single- and multi-snapshot training sets outlined

above. The single-snapshot results are provided in Sec-

tion 4.2.1, and the multi-snapshot results are provided

in Section 4.2.2.

Metrics These studies consider three performance met-

rics: mean classification accuracy (MCA), worst case

classification accuracy (WCA), and training time.

For one snapshot training, MCA1 is the average

classification accuracy that networks trained using a

single r(i)(t) from t ∈ [6.1, 7.0] achieve over V (Eq. 7).

MCA1 =

1

|V|

|V|∑
i=1

1

20

20∑
k=1

1

10

10∑
j=1

δ(T (i), T̂ (i)(tk; ttrain,j)) (7)

where T (i) is the true type of the i-th simulation in

the validation set V; T̂ (i) is the predicted type for the

i-th simulation in the validation set where the pre-

diction is based on a snapshot in V from time tk ∈
{7.1, 7.2, . . . , 9.0} (20 total); ttrain,j is the time at which

snapshots for the training data were taken; and finally

δ is the delta function (1 if arguments are equal, and 0

otherwise). The sum over the time of the training snap-

shot is used to obtain to the average performance of a

single-snapshot-trained network.

WCA1 is the minimum average classification accu-

racy that networks trained using a single r(i)(t) from

t ∈ [6.1, 7.0] achieve over V (Eq. 8).

WCA1 =

min
j∈[1,10],k∈[1,20]

1

|V|

|V|∑
i=1

δ(T (i), T̂ (i)(tk; ttrain,j)) (8)

For the ten-snapshot training, we do not average

over different training data sets because the training is

performed using all ten snapshots of t ∈ [6.1, 7.0]. As a

result, the MCA10 becomes:

MCA10 =
1

|V|

|V|∑
i=1

1

20

20∑
k=1

δ(T (i), T̂ (i)(tk)), (9)
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and the WCA10 becomes:

WCA10 = min
k∈[1,20]

1

|V|

|V|∑
i=1

δ(T (i), T̂ (i)(tk)). (10)

MCA [57,58] and WCA [59,60] are used widely in the

learning literature to provide a more holistic view by

accounting for both the overall performance and the

reliability of the proposed networks.

Training time is used to differentiate between networks

with similar MCA and WCA values. However, in other

applications, this timing can have a higher impact fac-

tor [33,30]. If all three performance metrics yield simi-

lar results, the network with the minimum dimensions

(number of hidden layers, number of units or number of

principal components) is preferred. Our aim is to have

both MCA and WCA ≥ 99% for classification.

Procedure The analysis proceeds by first choosing the

number of hidden units, then the number of hidden lay-

ers, and finally refining the number of principal compo-

nents. In the first two steps we also search over a coarse

grid of principal components, ranging between 10 to

2000, so that the hyperparameter search is not entirely

a greedy search. Results for each network combination

are provided in Figs. 7-11 and Figs. S1-S3.

Figs. 7-9 and Figs. S1-S3 (provided among supple-

mentary materials for more detailed analysis) corre-

spond to single snapshot-per-simulation training. Each

column represents training with a different time tk,

where tk is denoted at the top of the figures. Each

row of these figures represent testing on different time-

intervals of the validation set: the first row uses t be-

tween 7.1 − 8.0 and the second row uses t between

8.1−9.0. Both rows demonstrate extrapolation in time.

Fig. 11 corresponds to the ten snapshot training

studies, recall that this approach trains a single net-

work on multiple snapshots (compared to ten networks

at single snapshot training). Each column of these fig-

ures represent testing on different snapshots in the val-

idation set v(i)(t) ∈ V. The first and third column of

Fig.11a uses t between 7.1 − 8.0 and the second and

fourth column of Fig. 11a uses t between 8.1− 9.0. For

Fig. 11b, first column uses t between 7.1− 8.0 and sec-

ond column uses t between 8.1− 9.0.

We now describe hyper-parameter tuning results in

detail.

4.2.1 Single snapshot-per-simulation training

We first investigate whether training on a single snapshot-

per-simulation is sufficient. Fig. 6 summarizes the re-

sults of the parametric studies done using single snap-

shot along with the selected network parameters. Upon

completion of the pass we achieve a network withMCA1

of 95.3% and WCA1 of 84.6%.

Figs. S1-S3 are provided among supplementary ma-

terials for more detailed results.

Number of Hidden Units In this subsection we study

the effect of the number of hidden units on classifica-

tion accuracy. The worst performance is observed with

10 hidden units (87.2% MCA1, 72.3% WCA1) and the

best performances are observed with 300 and 100 hid-

den units (95.3% MCA1, 84.9% WCA1 respectively).

Pointwise classification errors — per training vali-

dation simulation and time snapshot — are shown in

Figs S1 for 10 units, S2 for one hundred units, and S3

for three hundred units.

From these figures, we calculate that WCA1 and

MCA1 becomes better as the number of hidden units

increases from 10 to 100 (Fig. S2 94.3% MCA1 at 30

PCs, 84.9% WCA1 at 30 PCs). However, beyond 100

hidden units, the performance of the MLP classifiers

start to saturate. Specifically, as the number of hidden

units increases from 100 to 300, MCA1 increases up to

95.3% for 30 PCs, and we obtain a WCA1 of 84.6% at

30 PCs (Fig. S3). Though the WCA1 seems to deteri-

orate slightly, we choose 300 hidden units as the result

of our analysis.

Number of Hidden Layers Next we increase the

number of hidden layers. Following this process we find

an improved three-layer architecture with 97.0%MCA1

and 84.2% WCA1.

Pointwise classification errors — per training vali-

dation simulation and time snapshot — are shown in

Figs 7 (for 2 layers) and 8(for 3 layers).

From these figures we calculate that WCA1 and

MCA1 becomes better as the number of hidden layers

increases to 2 (Fig. 7 96.3% MCA1 at 30 PCs, 84.4%

WCA1 at 30 PCs). However, beyond 2 hidden layers,

the performance of the MLP classifiers start to saturate.

Specifically, as the number of hidden layers increases

from 2 to 3, MCA1 increases up to 97.0% for 10 PCs,

and we obtain a WCA1 of 84.2% (Fig. 8). Though the

WCA1 seems to deteriorate slightly, we choose 3 hidden

layers as the result of our analysis. For further exam-

ples of networks that are not included in this work, the

bitbucket repository4 can be visited.

Number of Principal Components Next we con-

sider the number of principal components. The worst

performance is observed under 5 PCs (91.2% MCA1,

70.6% WCA1) and the best performance is observed

under 15 PCs (97.3% MCA1, 87.5% WCA1).

4 https://bitbucket.org/dorukaks/workspace/projects/CGL
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15 PC
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Fig. 6: Flow diagram for classification architecture determination using single snapshot-per-simulation training.

Each box represents a sequential step in the parametric study of this section. The architectural choice is written

above each arrow and the performance is written below.
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Fig. 7: Classification accuracies of 2-layer neural networks with Nunits = 300 on snapshots from the validation

set (top row: t ∈ [7.1, 8], bottom row: t ∈ [8.1, 9].). Columns correspond to networks trained with single-snapshots

obtained at the indicated training time (TR). Summary: highest MCA1=96.3% obtained with PC=30; highest

WCA1=84.4% obtained with PC=30.

Pointwise classification errors — per training vali-

dation simulation and time snapshot — are shown in

Fig 9 for all of the analyses mentioned in this section.

Fig. 8 demonstrates peak performance when the num-

ber of principal components is ≤ 30. Therefore we refine

our analysis in this region, and the results are shown

in Fig. 9. From these figures, we calculate that the

MCA1 are > 96.7% for 10, 15, 20 and 25 principal com-

ponents. We also find that their training times are sim-

ilar (1.95 − 2.25s). As a result, we choose 15 PCs for

the final architecture.

Single-snapshot summary Our final architecture is

an MLP classifier structure with 3 hidden layers, 300

hidden units and 15 PCs. A comparison of the point-

wise classification error of this architecture with a neu-

ral network lacking PCA processing is shown in Fig. 9.

We observe that without PCA preprocessing, all of the

performance metrics become significantly worse. The

MCA1 drops down to 73.7% and training time (which

is around 2s for the network with 3 hidden layers and

300 hidden units) almost doubles itself and jumps to

3.8s.

Fig. S1 shows that the accuracy peaks at the vali-

dation snapshots from the same temporal phase as the

training data for a given network (e.g. network trained

with snapshots from t = 6.7 shows its peak performance

at validation snapshots from t = 8.7, 9.7 etc.). We see

that all the single-snapshot analyses indicate periodic

patterns in the classification accuracy — see Figs. 9 and

S3 for the more obvious cases. This sinusoidal trend in

the classification accuracy hints that a single time snap-
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Fig. 8: Classification accuracies of 3-layer neural networks with Nunits = 300 on snapshots from the validation

set (top row: t ∈ [7.1, 8], bottom row: t ∈ [8.1, 9].). Columns correspond to networks trained with single-snapshots

obtained at the indicated training time (TR). Summary: highest MCA1=97.0% obtained with PC=30; highest

WCA1=84.2% obtained with PC=30.

shot cannot capture the full range of motion. The recur-

ring high accuracy is caused by the cyclic nature of the

underlying physical motion and therefore we conclude

that multi-snapshot training is required to achieve bet-

ter accuracy.

4.2.2 Ten snapshots-per-simulation training

We now repeat the above experiments for the case where

ten snapshots are gathered from each training simula-

tion (i.e entire r(i)(t)). Figure 10 indicates a significant

improvement, eventually obtaining greater than 99%

MCA10 and WCA10 accuracy. Since we achieve the

desired classification performance with a single layer

MLPC network, we skip tuning the number of layers as

shown in Fig. 10.

This improvement comes with significantly increased

training data size. The ten snapshot training data oc-

cupies 1.6GB of memory compared to 160MB for the

single-snapshot training. Nevertheless, we find the train-

ing times of both networks have the same order of mag-

nitude.

Number of Hidden Units In this subsection we study

the effect of the number of hidden units on classifica-

tion accuracy. The worst performance is observed under

10 hidden units (99.1% MCA10, 98.5% WCA10) and

the best performance is observed under 30 hidden units

(99.7% MCA10, 99.5% WCA10).

Pointwise classification errors — per training vali-

dation simulation and time snapshot — are shown in

Fig 11a for 10 units and 30 units.

From Fig. 11a we calculate that the WCA10 and the

MCA10 becomes slightly better as the number of hid-

den units increases from 10 (99.1% MCA10 and 98.5%

WCA10 at 1000 PCs) to 30 (99.7% MCA10 and 99.5%

WCA10 at 300 PCs). As the number of units increase

to 30, both of the criteria are met.

Unlike in the single snapshot training cases, the net-

works using many principal components are performing

close to the desired level of accuracy — ≥ 99% for all

simulations in the validation set V among the networks

with 30 hidden units (PC ≥ 100). Due to memory effi-

cient computing concerns, the focus is to achieve the

highest possible accuracy with the simplest network

possible and therefore we select the network with 30

hidden units as the result of this section.

Number of Principal Components Next we refine

the number of principal components. The worst perfor-

mance is observed with 50 principal components (97.2%

MCA10, 96.0% WCA10) and the best performance is
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Fig. 9: Classification accuracies of 3-layer neural networks with low to no PCs and Nunits = 300 on snapshots

from the validation set (top row: t ∈ [7.1, 8], bottom row: t ∈ [8.1, 9].). Columns correspond to networks trained

with single-snapshots obtained at the indicated training time (TR). Summary: highest MCA1=97.3% obtained

with PC=15; highest WCA1=87.5% obtained with PC=15. The figures are zoomed in to provide more detailed

overview and the shifted lower bounds of the figure axes are denoted in red
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Fig. 10: Flow diagram for classification architecture determination using ten snapshots-per-simulation training.

Each box represent a sequential step in the parametric study of this section. The architectural choice is written

above each arrow and the performance is written below.

observed under 200 principal components (99.7%MCA10,

99.4% WCA10). Furthermore, a comparison between

the best performing PCA hybridized MLP classifier and

non-PCA version of the same network shows that the

PCA-based classifier is better by 3.7% MCA10 and

3.6% WCA10

Pointwise classification errors — per training vali-

dation simulation and time snapshot — are shown in

Fig 11b for all of the analyses mentioned in this section.

Fig. 11a demonstrates peak performance when the

number of principal components is between 100 and 300

PCs. Therefore we refine our analysis in this region and

focus on the region between 50− 250 PCs. The results

of this analysis are shown in Fig. 11b.

As can be seen in Fig.11b all of the networks ex-

cept the ones with 50 and 100 principal components

achieve comparable and satisfactory MCA10 that is

above 99.5%. Since the training times and the WCA10

accuracy performances of the networks are not different

from each other, it can be concluded that the MLPC

with 1 layer and 30 units having 150 principal compo-

nents is the best performing combination for this archi-

tecture.

Ten-snapshots summary Our final architecture is

an MLP classifier structure with 1 layer and 30 units

and 150 PCs. A comparison of the pointwise classifi-

cation error of this architecture with a neural network

lacking PCA processing is shown in Fig. 11b. We ob-
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(a) Classification accuracies of 1-layer neural networks with
Nunits = 10 (left two columns - highest MCA10=99.1% obtained
with PC=1000; highest WCA10=98.5% obtained with PC=1000)
and Nunits = 30 (right two columns - highest MCA10=99.7%
obtained with PC=300; highest WCA10=99.5% obtained with
PC=300) on snapshots from the validation set.
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(b) Classification accuracies of 1-layer neural networks
with low to no PCs and Nunits = 30. Summary:
highest MCA10=99.7% obtained with PC=200; highest
WCA10=99.4% obtained with PC=200.

Fig. 11: Ten snapshot classification results with coarse principal component search (Fig. 11a). Ten snapshot

classification results with fine principal component search and no-PCA comparison (Fig. 11b). Networks are trained

using entire r(i)(t) with t ∈ [6.1, 7.0]. The figures are zoomed in to provide more detailed overview and the shifted

lower bounds of the figure axes are denoted in red. Time of the validation snapshots are denoted along the x-axis.

serve that without PCA preprocessing, networks per-

form comparably but still worse. The MCA10 drops

down to 96.2% and the WCA10 drops down to 95.8%.

These results give the impression that the desired spec-

ifications may be achieved using a more complex net-

work architecture. However, the training time grows

substantially with the absence of PCA preprocessing.

The MLP classifier takes around 1.3s on average to

train with PCA preprocessing whereas without the PCA

preprocessing, the training takes around 13s.

Classification summary Though MCA1 of the net-

works trained with single-snapshot are close to the de-

sired level, networks trained with ten-snapshots out-

perform their single-snapshot counterparts by a large

margin. Furthermore, that increase in both MCA and

WCA are achieved with a much more compact MLP

classifier. Therefore, our inverse design architecture is

equipped with a MLP classifier with PCA preprocessing

trained using ten-snapshots per simulation.

4.3 Regression

In this section we perform a parametric study over the

network architecture of the regressor stage described

in Section 3.2. We focus only on training with ten-

snapshots-per-simulation.

This study is a single forward process by which we

first optimize the number of hidden units, then the

number of hidden layers, then narrow in on the num-

ber of principle components, and finally the number of

epochs as shown in Fig. 12. As with the classification

procedure, the initial phases also consider parametric

dependence on the number of principal components.

The baseline architecture has 1 hidden layer and 30

hidden units.

Metrics Two types of performance metrics are consid-

ered: (1) mean α− quantiles (MQα) of percent error,

and (2) mean maximum (MMax) percent error. The

MQα percent error is defined as

MQα =
1

20

20∑
k=1

quant(α, PEk),

PEk = 100

(
p(i) − p̂(i)(tk)

p(i)

)
. (11)

In particular, this is the average (over 20 snapshots

in the testing regime tk ∈ [7.1, 9.0]) median percent-

age errors achieved by the stacked regressor networks

trained using a ten-snapshot sequence r(i)(t). The func-

tion quant(α, PEk) returns the α-th quantile values
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Fig. 12: Flow diagram for regression architecture determination using ten snapshots-per-simulation training. Each

box represents a sequential stage in the parametric study of this section. The best architectural choice following a

particular stage is written above each arrow and the performance is written below.

for a set of data points PEk. Here PEk is a vector

of percentage errors in recovering some parameter p(i)

in the testing set of parameters using snapshot r(tk) for

tk ∈ [7.1, 9.0] (the testing time-regime). Tables A1-A5

show the 25th, 50th, and 75th quantiles.

Similarly, the average maximum error is defined as

MMax =
1

20

20∑
k=1

max(PEk) (12)

However, since the extreme outliers can shift the

mean substantially, we prefer median as an unbiased

metric for the regression studies.

The aim of the case studies is to obtain a neural net-

work that has small median PE. We also want the final

network to be robust — having MQ75 ≤ 5%. Unless

there is a substantial difference between two MMax

values, it will not play a decisive role in the analysis.

Procedure The analysis proceeds by first choosing the

number of hidden units, then the number of hidden lay-

ers, then refining the number of principal components

and finally the number of epochs on the training set.

In the first two steps we also search over a coarse grid

of principal components, ranging between 20 to 640, so

that the hyperparameter search is not entirely a greedy

search.

For the simplicity of the analysis, both MLPs within

the stacked MLP regressors (SMLPR), defined in Sec-

tion 3.2, have the same network shape i.e. if a regres-

sor network is described as having 5 layers and 100

units, then the neural network consists of two MLP re-

gressors having 5 hidden layers with 100 neurons each.

Results for each network combination are provided in

Tables A1-A5, Figs. 13-15 and Figs. S4-S8 (Figs. S4-

S8 are provided in the supplementary material for the

interested reader).

Tables A1-A5 provide detailed results for the error

metrics of each network configuration in the analyses.

The columns are divided into three groups, one for each

sheet parameters. The rows are divided into subgroups

according to the number of different parameter options

investigated under each study and for Tables A1-A4, re-

gression metrics of the networks with different numbers

of principal components are listed. Minimum values of

each column are written in bold and the selected value

for that study is highlighted.

In Figs. 13-15 and Figs. S4-S8, each column rep-

resents the regression metrics for a different continu-

ous variable (amplitude, stiffness, wavenumber, respec-

tively) and each row gives the performance of the trained

network in terms of one of the three regression met-

rics (25th quantile, median, and 75th quantile, respec-

tively).

Number of Hidden Units In this subsection, we

study the effect of the number of hidden units on re-

gression performance. Following this analysis step, the

highest MQ50 (8.97%) is achieved with 30 hidden units

(for wavenumber, 20 PCs) and the lowest MQ50 under

this analysis (1.23%) is obtained with 1000 hidden units

(for stiffness, 40 PCs) (see Table A1).

Pointwise regression results — per training valida-

tion simulation and time snapshot — are shown in Figs S4
for 30 units, 13) for three hundred units, and S5) for

one thousand units. Then Table A1, the derived regres-

sion metrics from Figs. S4-S5 are presented.

Our baseline architecture (1 hidden layer 30 hid-

den units - Fig. S4) achieves highest and lowest MQ50

recorded 8.97% (for wavenumber, 20 PCs) and 1.96%

(for stiffness, 80 PCs), respectively. Increasing the num-

ber of hidden units to 300 decreases the MQ50 for all

three parameters. The highest and the lowest MQ50

recorded among networks with 300 hidden units are

5.71% (for wavenumber, 20 PCs) and 1.38% (for stiff-

ness, 80 PCs) respectively (Fig. 13).

Further increasing the number of hidden units to

1000 does not result in significant decrease of MQ50.

The maximum MQ50 observed among the networks

with 1000 hidden units are 5.97% (640 PCs, for wavenum-

ber) and 1.23% (40 PCs, for stiffness) respectively (Fig. S5).

In contrast to MQ50, increasing the number of units

does not result in a consistent reduction in MMax as

shown in Table A1. This is caused by the random occur-
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Fig. 13: Regression metrics of 1-layer SMLPR network with Nunits = 300 (trained using entire r(i)(t) ∈ [6.1, 7.0])

on 20-snapshots from the validation set (t ∈ [7.1, 9]). Columns correspond to different continuous sheet parameters,

rows correspond to different metrics. Summary: lowest MQ50=1.38% obtained with PC=80 for stiffness; lowest

MQ75=3.48% obtained with PC=80 for stiffness.

ring extreme outliers shifting the mean. It is also note-

worthy that this phenomenon becomes apparent for the

networks trained with higher numbers of principal com-

ponents.

Though most of the minimum values of each metric

appear among networks with Nunits = 1000, most of

the observed metrics under the networks with Nunits =

300 have less difference than 0.5% from the minimum

metrics observed in Table A1 Since both networks can

achieve comparable MMax values we proceed withNunits =

300 because of smaller network size (as highlighted in

Table A1).

Number of Hidden Layers In this subsection we

seek to improve accuracy by increasing the depth of the

networks with layers of 300 hidden units. The highest

MQ50 (5.71%) is obtained with 1 hidden layer and 20

PC) and the lowest MQ50 within this analysis (1.0%)

is obtained with 3 hidden layers and 80 PCs, according

to Table A2.

Pointwise regression results — per training valida-

tion simulation and time snapshot — are shown in Figs S6

for 2 hidden layers, S7) for three hidden layers, 14) for

four hidden layers, and S8 for five hidden layers. Then

Table A2, the derived regression metrics from Figs. S6-

S8 are presented.

We observe that adding the second hidden layer re-

sults in a median PE drop up to 50% for all of the

parameters as it can be seen in Table A2. Additionally,

the MaxPE also drops significantly for amplitude and

wavenumber as the number of hidden layers increase to

2. The highest and lowest MQ50 recorded with this net-

work combination are 2.93% (for amplitude, 640 PCs)

and 1.07% (for stiffness, 80 PCs) respectively.

Introduction of the third layer doesn’t have a sub-

stantial effect on the regression performance other than

reducing MMax for all of the parameters.

As the number of layers increases from 2 to 3, the

metrics for Nlayers = 3 (in Fig.S7) have slightly better

values than Nunits = 2 (in Fig.S6). The highest MQ50

recorded among networks with 3 hidden layers is 2.43%

(for amplitude, 80 PCs) whereas the lowest MQ50 is

1.0% (for stiffness, 80 PCs).

As the number of hidden layers increases to 4, the

performance metrics get close to the desired values.

Fig. 14 demonstrates that the metrics for 80 principal

components exhibit results that comply with the goal

metrics almost for all test snapshots. The highest and

lowest MQ50 recorded for this network combination are

3.11% (for amplitude, 20 PCs) and 1.11% (for stiffness,

160 PCs) respectively.
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At this point of the analysis, each additional layer

to the SMLPR architecture with 300 hidden units adds

between 30 − 50s of total training time depending on

the number of principal components used and number

of epochs selected to train the network.

Adding the fifth layer brings almost no improve-

ment to the regression metrics. In Fig. S8, the regres-

sion metrics of the network with 5 hidden layers with

300 units can be seen. The maximum and minimum

MQ50 recorded among networks with this combination

are 3.1% (for amplitude, 640 PCs) and 1.23% (for stiff-

ness, 80 PCs) respectively. This range is similar to the

results of the SMLPR with 4 hidden layers. Therefore,

SMLPR networks with 4 hidden are selected as the re-

sult of this study.

Number of Principal Components Next we tune

the number of principal components. The highestMQ50

is achieved with 70 principal components (for ampli-

tude,

2.11%) and the lowest MQ50 is achieved with 70 prin-

cipal components (for stiffness, 1.06%). Table A2 indi-

cates that the best PCA values are between 40 and 80,

so we zoom into this region in this study.

Pointwise regression results — per training valida-

tion simulation and time snapshot — are shown in Fig 15

for all the cases. Then Table A3, the derived regression

metrics from Fig. 15 are presented.

Table A3 summarizes the results of our analysis. All

of the trained networks except the one with 70 principal

components satisfy our criterion for MQ50 ≤ 2%. How-

ever, the 0.75th quantile ≤ 5% criterion is just satisfied

at the networks with 60 and 80 principal components.

Since there is not a significant difference between the

MMax values or the mean of 0.25th quantiles of PE

of two networks, the network with 60 principal compo-

nents is selected due to its smaller network size.

Number of Epochs In this study, the effect of train-

ing epochs on the regression performance is investi-

gated. Furthermore, a comparison between the PCA

hybridized and non-PCA version of the same network

architecture is done to investigate the benefits of PCA

hybridization. The worst performance within this sec-

tion is observed under 100 epochs (3.44% MQ50 for

amplitude) and the best performance is observed under

300 epochs (0.98% MQ50 for stiffness).

Pointwise regression results — per training valida-

tion simulation and time snapshot — are only shown

for 200 epochs in Fig 15. Results of 100 and 300 epochs

are only included in Table A4 along with the derived

regression metrics from Fig. 15 for epoch case studies.

The regression metrics for the Non-PCA comparison

are listed in Table A5.

The final network parameter of interest is the num-

ber of epochs completed to train the SMLPR networks.

Please note that the numbers given here represent the

number of epochs completed by each individual stage of

the SMLPR networks. Though we select a specific value

for the dimension of the coordinate data after princi-

ple component transformation in the previous section,

we investigate the [30, 80] principle component range in

this case study again to check if changing the number

of epochs have any effect on the best performing PC

choice in Table A4

To investigate the possibility of overfitting, we mod-

ify the number of epochs used for training. In partic-

ular, we test using hundred more and hundred fewer

epochs. Table A4 shows that changing the number of

epochs increases the MQ75 for amplitude by at least

0.5 and pushes the error in amplitude prediction beyond

our admissible limits. For stiffness and wavenumber, the

performance becomes slightly better by increasing the

number of epochs. However, the best SMLPR network

combination that satisfies our criteria remains as the

last section (4 layers 300 units with 60 PCs and 200

epochs).

Regression Summary Finally, we again compare per-

formance of our network to that which lacks PCA pre-

processing. Table A4 and Fig.15 show that removing

PCA hybridization from the coordinate components in-

creases the error in stiffness estimation to limit of our

predefined admissible values. In our analyses, the SMLPR

network with 60 principal components completes the

training in 514s whereas the Non-PCA version of the

same network completes the training in 638s. As PCA

preprocessing proves itself beneficial, we equip our in-

verse design architecture with a SMLP regressor with

4 layers 300 units 60 PCs that is trained using the ten-

snapshot-per-simulation data over 200 epochs and con-

clude our investigation.

4.4 Simulated Performance of Recovered

Parameters

In this section, we provide examples of the motion

recovered by the resulting inverse mapping architecture

in comparison to known actual parameters.

Figs. 16-19 show the performance for four cases with

parameters chosen to display notable vertical displace-

ments (two with planar and two with radial motion). In

the top subfigures we provide the motion with the true
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parameters, and the bottom subfigures provide the mo-

tion with the inverted parameters. The selected sam-

ples and the respective outputs of the inverse design

architecture are listed in Table A6. Inverse design ra-

dial motion continuous parameters were recovered with

≤ 2.87% error, whereas the continuous parameters in

the planar motion case were recovered with ≤ 2.47% er-

ror. For all cases, the correct wave type was predicted.

Videos for the motions can be found in supplementary

material5.

Figs. 16-17 provide both the shape of the gel at a

time instance and a time series of the vertical displace-

ment and forces for the planar waves. We note the gen-

eral agreement of the time series data.

The simulations with radial waves (Figs. 18 and 19)

indicate further discrepancy between shapes at a fixed

timestep. However, we see that these motions are fairly

chaotic, and such qualitative mismatch at a fixed time

does not necessarily indicate a significant mismatch in

motion type. Indeed the time series of the vertical dis-

placement and forces still indicate qualitative similarity.

To obtain a more quantitative comparison, we compare

Lyapunov exponents using a long-time simulation over

300 periods using the approach provided in [61]. Here,

we find at most 6.78% error in their dominant Lyapunov

exponents.

Note, we do not perform a similar comparison for

the planar cases because (1) they already indicate strong

agreement and (2) since they have one high frequency

and one low frequency oscillations, they are unsuit-

able for Lyapunov exponent estimation using our cho-

sen tool6 prepared according to [61].

5 Conclusion

We have successfully created an inverse design mapping

to learn sheet parameters of a self-oscillating gel to ob-

tain a target motion. Our final architecture consists of

several integrated neural networks — a single classifier

that determines a discrete parameter and two regres-

sors for determining continuous parameters. The opti-

mal classifier uses 150 principal components for PCA

preprocessing of the input into an MLP with 1 hidden

layer and 30 units with 150 principal components. The

regressor is a stacked two-network architecture, each

having 4 hidden layers and 300 units with 60 principal

5 The files are named as
set[setnumber] [actual/predicted] [300/20]s.gif
6 Alan Wolf (2021). Wolf Lyapunov ex-

ponent estimation from a time series.
(https://www.mathworks.com/matlabcentral/
fileexchange/48084-wolf-lyapunov-exponent-estimation-
from-a-time-series), MATLAB Central File Exchange.
Retrieved December 22, 2020.

components. For both classification and regression, the

networks are trained using snapshots from 10 succes-

sive steps of a forward simulation across a wide range

of parameter settings.

We also demonstrated the efficacy of the developed

architectures by comparing the simulations of the sheets

with the recovered parameters and the true parameters

both qualitatively through inspection of the force and

vertical displacement trajectories and quantitatively through

comparing the Lyapunov exponents of the resulting chaotic

systems.

Future work will seek to verify our approach using

experimental data on a gel.
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series of the force terms (bottom right) for t = [0, 20].
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(a) MATLAB simulations of the actual parameters (A = 0.0366 Ks = 5830.4 k = 1.6545) for parameter set 3.

(b) MATLAB simulations of the inverted parameters (A = 0.0356 Ks = 5913.4 k = 1.6688) for parameter set 3. Z axes of the
top plots are flipped to match the shapes of the sheets to the actual simulations.

Fig. 18: Comparison of true and estimated motions. Each subfigure shows the vertical displacement (top left); the

lattice springs’ rest lengths at t = 15 (top right); time series plot of vertical displacement (bottom left); and time

series of the force terms (bottom right) for t = [0, 20].
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series of the force terms (bottom right) for t = [0, 20].
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Table A1: Regression metrics of the hidden unit case studies for regression (MQ25: mean 25-th quantile, MQ50:

mean 50-th quantile, MQ75: mean 75-th quantile, MMax: mean maximum as defined in Section 3.2)

Number

of Units
PCs

Amplitude Stiffness Wavenumber

MQ25 MQ50 MQ75 MMax MQ25 MQ50 MQ75 MMax MQ25 MQ50 MQ75 MMax

30

20 2.91 7.33 17.68 323.9 1.14 2.63 5.36 58.1 3.8 8.97 21.06 3200.9
40 2.06 4.88 10.68 316.7 1.01 2.33 4.78 299.5 2.7 6.58 16.39 1813.2
80 1.72 4.08 9.24 1233.6 0.8 1.96 4.29 894.9 2.04 5.07 15.25 17721.1
160 2.05 4.76 9.24 1565.8 0.88 2.03 4.37 928.0 2.42 5.85 17.21 17403.0
320 2.12 5.04 11.11 3897.4 0.93 2.26 4.7 3329.1 2.43 6.34 17.47 140166.9
640 2.18 5.21 11.62 3706.2 0.9 2.28 5.2 4121.3 2.41 6.04 17.66 133543.6

100

20 2.39 5.98 13.81 247.5 0.94 2.17 4.47 47.7 2.9 7.05 16.87 2825.1
40 1.74 4.09 9.28 521.2 0.66 1.63 3.8 403.2 1.77 4.54 13.11 1033.3
80 1.48 3.55 8.51 1953.0 0.56 1.44 3.65 1049.1 1.73 4.42 13.53 6123.3
160 1.8 4.25 9.86 2427.1 0.53 1.43 3.73 1340.2 1.74 4.44 14.41 15501.2
320 1.73 4.27 10.29 3215.0 0.92 2.34 5.18 2556.7 1.95 4.98 15.87 32166.0
640 1.81 4.33 9.89 4891.3 0.74 1.73 4.01 5986.5 2.16 5.45 15.9 41438.8
20 1.95 5.06 12.51 240.1 0.61 1.65 4.1 44.46 2.32 5.71 15.6 2248.7
40 2.23 4.98 11.09 558.0 0.57 1.47 3.54 809.23 1.33 3.52 12.85 3387.5
80 1.47 3.59 8.92 2424.2 0.59 1.38 3.48 1510.0 1.17 3.15 12.47 5193.8
160 1.41 3.34 7.98 1888.3 0.63 1.67 3.98 1862.2 1.37 3.55 12.1 17117.9
320 1.47 3.50 8.37 4960.4 0.58 1.48 3.68 3665.0 1.53 4.1 12.56 70353.4

300

640 2.09 4.67 9.73 8063.9 1.02 2.46 5.6 5053.7 2.18 5.41 15.8 77499.7

1000

20 1.39 3.82 10.18 212.4 0.56 1.44 3.65 49.9 1.71 4.5 13.65 1872.0

40 1.34 3.32 8.38 387.4 0.45 1.23 3.23 566.3 1.24 3.14 8.99 4427.0
80 1.47 3.66 8.83 879.2 0.76 1.72 3.97 1915.1 1.05 2.73 9.7 8684.3
160 1.49 3.59 8.57 2371.4 0.9 1.77 3.91 1373.9 1.54 3.86 12.47 19363.8
320 2.13 5.2 12.49 6334.6 1.19 2.77 6.04 6825.6 1.67 4.37 13.63 59121.9
640 2.27 5.23 11.42 10535.3 1.19 3.2 7.36 16774.8 2.54 5.97 17.3 133128.3
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Table A2: Percent error (PE) metrics of the layer case studies for regression (MQ25: mean 25-th quantile, MQ50:

mean 50-th quantile, MQ75: mean 75-th quantile, MMax: mean maximum as defined in Section 3.2)

Layers PCs
Amplitude Stiffness Wavenumber

MQ25 MQ50 MQ75 MMax MQ25 MQ50 MQ75 MMax MQ25 MQ50 MQ75 MMax

1

20 1.95 5.06 12.51 240.1 0.61 1.65 4.1 44.5 2.32 5.71 15.6 2248.7
40 2.23 4.98 11.09 558.0 0.57 1.41 3.54 809.2 1.33 3.52 12.85 3387.5
80 1.47 3.59 8.92 2424.2 0.59 1.38 3.48 1510.1 1.17 3.15 12.47 5193.8
160 1.41 3.34 7.98 1888.3 0.63 1.67 3.98 1862.2 1.37 3.55 12.1 17117.9
320 1.47 3.56 8.37 4960.4 0.58 1.48 3.68 3665.0 1.53 4.1 12.56 70353.4
640 2.09 4.67 9.73 8063.9 1.02 2.46 5.6 5053.7 2.18 5.41 15.8 77499.7

2

20 0.9 2.53 7.59 187.4 0.35 1.04 3.19 42.7 0.77 2.23 8.63 1036.9
40 0.81 2.23 6.28 451.3 0.69 1.61 3.71 290.0 0.62 1.67 6.46 522.0
80 0.75 2.07 5.82 801.5 0.35 1.07 3.08 528.0 0.63 1.74 6.5 1368.3
160 1.2 2.73 6.58 1106.3 0.54 1.35 3.39 370.4 0.85 2.02 6.6 1452.4
320 0.89 2.23 5.98 1193.1 0.66 1.87 4.54 593.7 0.75 2.03 6.88 1537.1
640 1.21 2.93 7.1 1256.4 0.55 1.49 3.91 1008.6 1.02 2.72 8.94 3822.3

3

20 0.86 2.27 6.76 142.3 0.34 1.06 3.14 45.7 0.61 1.84 7.06 1041.0
40 0.74 2.05 5.48 216.9 0.4 1.14 3.08 173.6 0.5 1.35 5.19 383.9
80 1.03 2.43 6.26 633.0 0.33 1.0 2.95 193.0 0.73 1.79 5.7 659.2
160 0.89 2.19 5.61 905.1 0.47 1.53 3.88 368.5 0.58 1.56 6.02 1601.2
320 0.9 2.2 5.73 827.7 0.39 1.11 3.34 471.3 0.61 1.68 6.1 1562.9
640 0.99 2.42 5.89 952.4 0.48 1.43 3.91 959.8 0.74 1.96 6.68 2614.7
20 1.05 3.11 8.05 175.9 0.54 1.47 3.74 47.1 0.6 1.72 6.47 1226.7
40 0.74 1.99 5.56 167.0 0.52 1.23 3.22 285.9 0.44 1.2 4.4 395.4
80 0.64 1.74 5.07 329.3 0.53 1.4 3.45 236.4 0.44 1.23 4.6 531.1
160 0.83 2.14 5.62 157.5 0.4 1.11 3.29 231.5 0.54 1.46 5.35 991.9
320 1.14 2.97 7.25 224.0 0.53 1.55 4.02 476.0 0.69 1.72 5.52 1064.2

4

640 0.98 2.42 5.94 216.3 0.64 1.72 4.42 474.0 0.62 1.77 6.21 1105.0

5

20 0.82 2.3 6.54 161.2 0.57 1.51 3.71 44.5 0.61 1.68 6.0 808.9
40 0.77 1.84 5.0 133.7 0.48 1.28 3.23 125.8 0.54 1.32 4.51 362.5

80 0.7 1.85 5.16 145.6 0.43 1.23 3.48 210.0 0.48 1.33 4.8 515.0
160 0.95 2.46 6.23 152.2 0.91 1.88 4.02 166.0 0.57 1.43 4.82 599.3
320 0.93 2.31 5.64 186.7 0.51 1.47 3.99 200.4 0.5 1.38 5.27 819.0
640 1.27 3.1 7.36 191.3 0.89 2.16 5.17 241.8 0.63 1.69 6.19 859.8

Table A3: Percent error (PE) metrics of the principal component case studies for regression (MQ25: mean 25-

th quantile, MQ50: mean 50-th quantile, MQ75: mean 75-th quantile, MMax: mean maximum as defined in

Section 3.2)

Layers PCs
Amplitude Stiffness Wavenumber

MQ25 MQ50 MQ75 MMax MQ25 MQ50 MQ75 MMax MQ25 MQ50 MQ75 MMax

4

30 0.75 1.86 5.13 144.4 0.48 1.21 3.43 96.7 0.51 1.32 4.77 503.9
40 0.7 1.82 5.16 167.5 0.53 1.41 3.43 101.4 0.58 1.49 4.93 424.4

50 0.74 1.93 5.15 270.8 0.53 1.46 3.52 308.9 0.51 1.33 4.65 450.1
60 0.77 1.96 4.99 231.2 0.44 1.38 3.57 202.5 0.5 1.36 4.91 479.7
70 0.78 2.11 5.73 375.5 0.45 1.06 3.04 158.1 0.49 1.32 4.89 493.7
80 0.69 1.8 5.0 194.9 0.37 1.07 3.05 229.1 0.51 1.33 4.85 567.9
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Table A4: Percent error (PE) metrics of the epoch case studies for regression (MQ25: mean 25-th quantile, MQ50:

mean 50-th quantile, MQ75: mean 75-th quantile, MMax: mean maximum as defined in Section 3.2). *:200 epochs

is the standard number of epochs used throughout the previous sections

Epochs PCs
Amplitude Stiffness Wavenumber

MQ25 MQ50 MQ75 MMax MQ25 MQ50 MQ75 MMax MQ25 MQ50 MQ75 MMax

100

30 0.89 2.22 5.89 129.9 0.88 2.08 4.65 45.7 0.47 1.3 5.28 345.0
40 1.57 3.2 6.93 215.5 0.59 1.44 3.6 125.1 0.84 1.99 6.19 425.2
50 1.74 3.44 7.26 261.8 0.7 1.47 3.31 224.0 0.61 1.5 4.92 408.9
60 0.83 2.22 6.0 323.1 0.48 1.22 3.26 180.4 0.54 1.37 4.96 391.1
70 0.82 2.07 5.6 521.3 0.57 1.21 3.15 186.8 0.49 1.3 4.99 746.2
80 0.98 2.41 6.16 392.7 0.51 1.41 3.58 145.9 0.58 1.49 5.12 549.1

200*

30 0.75 1.86 5.13 144.4 0.48 1.21 3.43 96.7 0.51 1.32 4.77 503.9
40 0.7 1.82 5.16 167.5 0.53 1.41 3.43 101.4 0.58 1.49 4.93 424.4
50 0.74 1.93 5.15 270.8 0.53 1.46 3.52 308.9 0.51 1.33 4.65 450.1
60 0.77 1.96 4.99 231.2 0.44 1.38 3.57 202.5 0.5 1.36 4.91 479.7
70 0.78 2.11 5.73 375.5 0.45 1.06 3.04 158.1 0.49 1.32 4.89 493.7
80 0.69 1.8 5.0 194.9 0.37 1.07 3.05 229.1 0.51 1.33 4.85 567.9

300

30 0.71 1.97 5.65 430.7 0.36 0.98 2.99 157.6 0.41 1.2 4.87 559.3
40 0.77 2.05 5.68 254.6 0.4 1.19 3.27 308.1 0.53 1.37 4.76 394.6
50 0.92 2.31 5.92 382.9 0.45 1.18 3.03 203.8 0.53 1.34 4.78 517.5
60 0.73 1.97 5.41 355.6 0.36 1.01 2.85 162.9 0.51 1.34 4.62 624.9
70 0.97 2.37 5.83 408.4 0.48 1.51 3.79 213.8 0.5 1.31 4.81 500.3
80 0.87 2.05 5.31 605.0 0.44 1.15 3.14 239.2 0.48 1.34 4.87 557.2

Table A5: Percent error (PE) metrics of the Non-PCA comparison case study for regression (MQ25: mean 25-

th quantile, MQ50: mean 50-th quantile, MQ75: mean 75-th quantile, MMax: mean maximum as defined in

Section 3.2).

Epochs PCs
Amplitude Stiffness Wavenumber

MQ25 MQ50 MQ75 MMax MQ25 MQ50 MQ75 MMax MQ25 MQ50 MQ75 MMax

200
60 0.77 1.96 4.99 231.2 0.44 1.38 3.57 202.5 0.5 1.36 4.91 479.7
N/A 0.76 2.07 5.75 241.1 0.77 1.93 4.69 214.7 0.54 1.36 4.39 643.8

Table A6: Errors in our inverse design estimation for four representative parameter settings P: planar motion,

R: radial motion. In addition to three continuous sheet parameters, Lyapunov exponents of radial motions are

provided for the radial cases. Video column denotes the name of the motion video of given parameter combination

in supplementary material.

Video Amplitude Stiffness Wavenumber Lyap. Exp.

Set 1 (P)
Actual (Fig. 16a) set1 actual 300s.gif 0.0824 5875.3 1.9100 N/A
Predicted (Fig. 16b) set1 predicted 300s.gif 0.0810 5896.4 1.8782 N/A
Error (%) — 1.73 0.36 1.66 N/A

Set 2 (P)
Actual (Fig. 17a) set2 actual 300s.gif 0.1211 8806.1 2.7090 N/A
Predicted (Fig. 17b) set2 predicted 300s.gif 0.1182 8829.5 2.7213 N/A
Error (%) — 2.47 0.26 0.45 N/A

Set 3 (R)
Actual (Fig. 18a) set3 actual 300s.gif 0.0366 5830.4 1.6545 1.9956
Predicted (Fig. 18b) set3 predicted 300s.gif 0.0356 5913.5 1.6688 2.1309
Error (%) — 2.87 1.43 0.86 6.78

Set 4 (R)
Actual (Fig. 19a) set4 actual 300s.gif 0.0911 4561.8 1.7446 1.3115
Predicted (Fig. 19b) set4 predicted 300s.gif 0.0903 4552.8 1.7106 1.3919
Error (%) — 0.93 0.20 1.99 6.13


